首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Melamine can be incorporated in the synthesis of urea‐formaldehyde (UF) resins to improve performance in particleboards (PB), mostly in terms of hydrolysis resistance and formaldehyde emission. In this work, melamine‐fortified UF resins were synthesized using a strong acid process. The best step for melamine addition and the effect of the reaction pH on the resin characteristics and performance were evaluated. Results showed that melamine incorporation is more effective when added on the initial acidic stage. The condensation reaction pH has a significant effect on the synthesis process. A pH below 3.0 results on a very fast reaction that is difficult to control. On the other hand, with pH values above 5.0, the condensation reaction becomes excessively slow. PBs panels produced with resins synthesized with a condensation pH between 4.5 and 4.7 showed good overall performance, both in terms of internal bond strength and formaldehyde emissions. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
The favored pH ranges for the formation of urons in urea‐formaldehyde (UF) resins preparation were determined, these being at pH's higher than 6 and lower than 4 at which the equilibrium urons ↔ N,N′‐dimethylol ureas are shifted in favor of the cyclic uron species. Shifting the pH slowly during the preparation from one favorable range to the other causes shift in the equilibrium and formation of a majority of methylol ureas species, whereas a rapid change in pH does not cause this to any great extent. UF resins in which uron constituted as much as 60% of the resin were prepared and the procedure to maximize the proportion of uron present at the end of the reaction is described. Uron was found to be present in these resins also as linked by methylene bridges to urea and other urons and also as methylol urons, the reactivity of the methylol group of this latter having been shown to be much lower than that of the same group in methylol ureas. Thermomechanical analysis (TMA) tests and tests on wood particleboard prepared with uron resins to which relatively small proportions of urea were added at the end of the reaction were capable of gelling and yielding bonds of considerable strength. Equally, mixing a uron‐rich resin with a low F/U molar ratio UF resin yielded resins of greater strength than a simple UF of corresponding molar ratio indicating that UF resins of lower formaldehyde emission with still acceptable strength could be prepared with these resins. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 277–289, 1999  相似文献   

3.
Effects of resin formulation, catalyst, and curing temperature were studied for particleboard binder‐type urea‐formaldehyde (UF) and 6 ~ 12% melamine‐modified urea‐melamine‐formaldehyde (UMF) resins using the dynamic mechanical analysis method at 125 ~ 160°C. In general, the UF and UMF resins gelled and, after a relatively long low modulus period, rapidly vitrified. The gel times shortened as the catalyst level and resin mix time increased. The cure slope of the vitrification stage decreased as the catalyst mix time increased, perhaps because of the deleterious effects of polymer advancements incurred before curing. For UMF resins, the higher extent of polymerization effected for UF base resin in resin synthesis increased the cure slope of vitrification. The cure times taken to reach the vitrification were longer for UMF resins than UF resins and increased with increased melamine levels. The thermal stability and rigidity of cured UMF resins were higher than those of UF resins and also higher for resins with higher melamine levels, to indicate the possibility of bonding particleboard with improved bond strength and lower formaldehyde emission. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 377–389, 2005  相似文献   

4.
Particleboards bonded with 6 and 12% melamine‐modified urea‐formaldehyde (UMF) resins were manufactured using two different press temperatures and press times and the mechanical properties, water resistance, and formaldehyde emission (FE) values of boards were measured in comparison to a typical urea‐formaldehyde (UF) resin as control. The formaldehyde/(urea + melamine) (F/(U + M)) mole ratio of UMF resins and F/U mole ratio of UF resins were 1.05, 1.15, and 1.25 that encompass the current industrial values near 1.15. UMF resins exhibited better physical properties, higher water resistance, and lower FE values of boards than UF resin control for all F/(U + M) mole ratios tested. Therefore, addition of melamine at these levels can provide lower FE and maintain the physical properties of boards. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
In this work, the multiepoxy functional glycidyl ether (GE) modified urea‐formaldehyde (UF) resins were synthesized via a traditional alkaline‐acid process under low formaldehyde/urea (F/U) molar ratio. The synthesized resins were characterized by 13C magnetic resonance spectroscopy (13C‐NMR), indicating that GE can effectively react with UF resins via the ring‐opening reaction of epoxy groups. Moreover, the residual epoxy groups of GE could also participate in the curing reaction of UF resins, which was verified by Fourier transform infrared spectroscopy. The storage stability of GE‐modified UF resins and the thermal degradation behavior of the synthesized resins were evaluated by using optical microrheology and thermogravimetric analysis, respectively. Meanwhile, the synthesized resins were further employed to prepare the plywood with the veneers glued. For the modification on bonding strength and formaldehyde emission of the plywood, the influences of addition method, type, and amount of GE were systematically investigated. The performance of UF adhesives were remarkably improved by the modification of GE around 20–30% (weight percentage of total urea) in the acidic condensation stage during the resin synthesis. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
利用AR-M-AR粉对脲醛树脂(UF树脂)进行增强和降低游离甲醛释放量研究结果表明,由羟甲基化三聚氰胺和烷基间苯二酚制成的线型AR-M-AN粉能显著提高UF树脂胶合板的胶接强度,特别是胶合耐水性,并能明显地减少UF树脂胶合板的游离甲醛释放量。但是,对于在强酸性条件下合成的部分UF树脂添加AR-M-AR粉后胶接强度下降。  相似文献   

7.
To lower the formaldehyde emission of wood‐based composite panels bonded with urea–formaldehyde (UF) resin adhesive, this study investigated the influence of acrylamide copolymerization of UF resin adhesives to their chemical structure and performance such as formaldehyde emission, adhesion strength, and mechanical properties of plywood. The acrylamide‐copolymerized UF resin adhesives dramatically reduced the formaldehyde emission of plywood. The 13C‐NMR spectra indicated that the acrylamide has been copolymerized by reacting with either methylene glycol remained or methylol group of UF resin, which subsequently contributed in lowering the formaldehyde emission. In addition, an optimum level for the acrylamide for the copolymerization of UF resin adhesives was determined as 1%, when the formaldehyde emission and adhesion strength of plywood were taken into consideration. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Typical particleboard wood‐adhesive urea–formaldehyde (UF) resins, synthesized with formaldehyde/first urea (F/U1) mol ratios of 1.80, 2.10, and 2.40 and the second urea added to an overall F/U ratio of 1.15, in weak alkaline pH, were allowed to stand at room temperature over a period of 50 days. 13C‐NMR of time samples taken over the storage period showed gradual migration of hydroxymethyl groups from the polymeric first‐urea components to the monomeric second‐urea components and also an advancing degree of polymerization of resins by forming methylene and methylene ether groups involving the second urea. These phenomena that varied with the F/U1 mol ratios used in the resin syntheses due to the varying polymer branching structures resulted in the first step of resin synthesis. Varying viscosity decreases and increases of the resins also occurred. Due to these chemical and physical changes, the particleboards that bonded with the sampled resins showed varying bond strength and formaldehyde‐emission values, indicating process optimizations possible to improve bonding and formaldehyde‐emission performances. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1155–1169, 2001  相似文献   

9.
The purpose of this study was to investigate the effects of reaction pH conditions on thermal behavior of urea–formaldehyde (UF) resins, for the possible reduction of formaldehyde emission of particleboard bonded with them. Thermal curing properties of UF resins, synthesized at three different reaction pH conditions, such as alkaline (pH 7.5), weak acid (pH 4.5), and strong acid (pH 1.0), were characterized with multiheating rate method of differential scanning calorimetry. As heating rate increased, the onset and peak temperatures increased for all three UF resins. By contrast, the heat of reaction (ΔH) was not much changed with increasing heating rates. The activation energy (Ea) increased as the reaction pH decreased from alkaline to strong acid condition. The formaldehyde emission of particleboard was the lowest for the UF resins prepared under strong acid, whereas it showed the poorest bond strength. These results indicated that thermal curing behavior was related to chemical species, affecting the formaldehyde emission, while the poor bond strength was believed to be related to the molecular mobility of the resin used. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 422–427, 2006  相似文献   

10.
Syntheses of urea–melamine–formaldehyde (UMF) resins were studied using 2–12% melamine levels and UF base resins that were preadvanced to various different extents. The melamine reaction was carried out at pH 6.3 with F/(U + M) mole ratio of 2.1 until a target viscosity of V was reached (Gardener–Holdt) and then the second urea added at pH 8.0 to give a final F/(U + M) mole ratio of 1.15. Analyses with 13C‐NMR and viscosity measurements showed that MF components react fast and the UF components very slowly in the melamine reaction. Therefore, as the extent of preadvancement of UF base resin was decreased, the reaction time to reach the target viscosity became longer and the MF resin components showed high degrees of polymerization. The overpolymerization of MF components resulted in increasingly more opaque resins, with viscosity remaining stable for more than a month. As the preadvancement of UF base resin was increased, the extent of advancement of MF components decreased, to give clearer resins, with viscosity slowly increasing at room temperature. Overall, preadvancing the UF base resin components to an appropriate extent was found to be a key to synthesizing various low‐level melamine‐modified UMF resins. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2559–2569, 2004  相似文献   

11.
Several polycarbamates and polycarbamate–formaldehyde (CF) resins were synthesized, and their properties were investigated aiming at developing of useful thermosetting polymer materials from simple polyols including those derived from renewable resources. Polycarbamates synthesized from polyols using two‐step laboratory routes showed good storage stabilities making them suitable as large volume industrial chemicals. Furthermore, syntheses and 13C‐NMR studies of CF resins showed the formation of oligomeric resins having hydroxymethyl and methylene groups with thermosetting curing properties that are similar to those of current urea–formaldehyde (UF) resins. Dynamic mechanical analysis studies showed somewhat slower curing rates for CF resins compared to UF resins. Bonding of particleboard and internal bond and free formaldehyde content measurements indicated high‐bond strength values and very low‐formaldehyde emission potentials for CF resins. The higher functionalities of CF resins appear to be the basis of good performances. Further investigations on scalable synthesis methods for polycarbamates and on the expansion of CF resins' bonding capabilities would need to be investigated in the future. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
The incorporation of the modified starch (MS) in urea‐formaldehyde resins at different stage of the synthesis was studied in this article. The synthesized resins were characterized by Fourier transform infrared spectroscopy, indicating that the ester bond can be introduced into the UF structure after the addition of MS. The curing reactions were examined with differential scanning calorimetry and it reveals that curing temperature of UF resin are slightly shifted to higher temperatures. To study the bonding strength and formaldehyde emission of the bonded plywood, the addition method and amount of MS are systematically investigated. The performance of the UF resins is remarkably improved by the addition of MS around 15% (weight percentage of the total resin) in the second stage. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40202.  相似文献   

13.
The effects of posttreatments of particleboard adhesive‐type urea–formaldehyde resins were studied. The resins were synthesized with formaldehyde/first urea (F/U1) mol ratios of 1.40, 1.60, 1.80, 2.10, and 2.40 and then the second urea was added to give a final formaldehyde/urea ratio of 1.15 in alkaline pH. The resins were posttreated at 60°C for up to 13.5 h and the 2.5‐h heat‐treated resin samples were stored at room temperature for up to 27 days. Resins sampled during the posttreatments were examined by 13C‐NMR and evaluated by bonding particleboards. In the posttreatments, hydroxymethyl groups on the polymeric resin components dissociated to formaldehyde and reacted with the second urea, and methylene and methylene–ether groups were formed from reactions involving the second urea. Methylene–diurea and urea groups bonded to UF polymers were identified. As a result, the viscosity of the resins initially decreased but later increased along with the cloudiness of the resins. Bond‐strength and formaldehyde‐emission values of particleboard varied with posttreatment variables as well as with the F/U1 mol ratios used in the resin syntheses. The results would be useful in optimizing resin synthesis and handling parameters. Various reaction mechanisms were considered. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1896–1917, 2003  相似文献   

14.
Low‐condensation phenol‐formaldehyde (PF) resins coreacted under alkaline conditions with up to 42% molar urea on phenol during resin preparation yielded PUF resins capable of faster hardening times than equivalent pure PF resins prepared under identical conditions and presented better performance than the latter. The water resistance of the PUF resins prepared seemed comparable to pure PF resins when used as adhesives for wood particleboard. Part of the urea was found by 13C‐NMR to be copolymerized to yield the alkaline PUF resin; whereas, especially at the higher levels of urea addition, unreacted urea was still present in the resin. Increase of the initial formaldehyde to phenol molar ratio decreased considerably the proportion of unreacted urea and increased the proportion of PUF resin. A coreaction scheme of phenolic and aminoplastic methylol groups with reactive phenol and urea sites based on previous model compounds work has been proposed, copolymerized urea functioning as a prebranching molecule in the forming, hardened resin network. The PUF resins prepared were capable of further noticeable curing acceleration by addition of ester accelerators; namely, glycerol triacetate (triacetin), to reach gel times as fast as those characteristic of catalyzed aminoplastic resins, but at wet strength values characteristic of exterior PF resins. Synergy between the relative amounts of copolymerized urea and ester accelerator was very noticeable at the lower levels of the two parameters, but this effect decreased in intensity toward the higher percentages of urea and triacetin. 13C‐NMR assignements of the relevant peaks of the PUF resins are reported and compared with what has been reported in the literature for mixed, coreacted model compounds and pure PF and urea‐formaldehyde (UF) resins. The relative performance of the different PUF resins prepared was checked under different conditions by thermomechanical analysis (TMA) and by preparation of wood particleboard, and the capability of the accelerated PUF resins to achieve press times as fast as those of aminoplastic (UF and others) resins was confirmed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 359–378, 1999  相似文献   

15.
Urea‐formaldehyde (UF) resins are prone to hydrolysis that results in low‐moisture resistance and subsequent formaldehyde emission from UF resin‐bonded wood panels. This study was conducted to investigate hydrolytic stability of modified UF resins as a way of lowering the formaldehyde emission of cured UF resin. Neat UF resins with three different formaldehyde/urea (F/U) mole ratios (1.4, 1.2, and 1.0) were modified, after resin synthesis, by adding four additives such as sodium hydrosulfite, sodium bisulfite, acrylamide, and polymeric 4,4′‐diphenylmethane diisocyanate (pMDI). All additives were added to UF resins with three different F/U mole ratios before curing the resin. The hydrolytic stability of UF resins was determined by measuring the mass loss and liberated formaldehyde concentration of cured and modified UF resins after acid hydrolysis. Modified UF resins of lower F/U mole ratios of 1.0 and 1.2 showed better hydrolytic stability than the one of higher F/U mole ratio of 1.4, except the modified UF resins with pMDI. The hydrolytic stability of modified UF resins by sulfur compounds (sodium bisulfate and sodium hydrosulfite) decreased with an increase in their level. However, both acrylamide and pMDI were much more effective than two sulfur compounds in terms of hydrolytic stability of modified UF resins. These results indicated that modified UF resin of the F/U mole ratio of 1.2 by adding acrylamide was the most effective in improving the hydrolytic stability of UF resin. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
针对实际应用,以=三聚氰胺作为改性剂对脲醛树脂进行共聚和共混改性.在不同固化体系下,采用不同摩尔比低毒脲醛树脂分别与三聚氰胺混合,对混合比例变化对胶合强度和甲醛释放量的影响进行了具体研究.结果表明:固化体系不同,胶接强度也不相同.随着摩尔比的升高,胶接强度提高,甲醛释放量亦相应提高.用三聚氰胺改性的脲醛树脂的胶接强度与甲醛释放量均优于纯脲醛树脂.混合胶液中随三聚氰胺比例减少,胶接性能有所下降,甲醛释放量变化逐渐趋于平稳.  相似文献   

17.
Kinetic evidence in thermomechanical analysis experiments and carbon‐13 nuclear magnetic resonance spectroscopy (13C NMR) evidence indicates that the strength of a joint bonded with UF (urea–formaldehyde)/polymeric 4,4'‐diphenylmethane diisocyanate (pMDI) glue mixes is improved by coreaction of the methylol groups of UF resins with pMDI to form a certain number of methylene cross‐links. The formation of these methylene cross‐links is predominant, rather than formation of urethane bridges which still appear to form but which are in great minority. This reaction occurs in presence of water and under the predominantly acid hardening conditions, which is characteristic of aminoplastic resins (thus, in presence of a hardener). Coreaction occurs to a much lesser extent under alkaline conditions (hence, without UF resins hardeners). The predominant reaction is then different in UF/pMDI adhesive systems than that observed in phenol‐formaldehyde (PF)/pMDI adhesive systems. The same reaction observed for UF/pMDI system at higher temperatures has also been observed in PF/pMDI systems, but only at lower temperatures. The water introduced in the UF/pMDI mix by addition of the UF resin solution has been shown not to react with pMDI to an extent such as to contribute much, if at all, to the increase in strength of the hardened adhesive. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3681–3688, 2002  相似文献   

18.
为了降低脲醛树脂的游离甲醛含量及其胶接制品的甲醛释放量,本研究在脲醛树脂合成过程中加入改性剂代替部分甲醛,通过尿素-甲醛-改性剂发生共缩聚反应,合成了改性脲醛树脂。研究了改性剂取代甲醛的摩尔比对改性脲醛树脂固化速度、游离甲醛含量的影响,以及在不同的热压条件下,对胶接胶合板的胶合强度和甲醛释放量的影响。研究结果表明,改性剂的加入不仅能有效降低改性脲醛树脂的游离甲醛含量及其胶合板的甲醛释放量,还能提高胶合板的胶合强度和耐水性。  相似文献   

19.
The addition of melamine acetate salts to an adhesive glue mix can allow the use of melamine–urea–formaldehyde (MUF) resins of lower melamine contents (rather than just urea–formaldehyde resins) and lower total amounts of melamine. Performances can be obtained that are characteristic of the top‐of‐the‐line, generally higher melamine content MUF adhesive resins for the preparation of wood particleboard panels. Improvements in the panel internal‐bond strength of greater than 30% can be obtained by the addition of melamine acetate salts to top‐of‐the‐line MUF resins. The approach to the concept of increased melamine solubility with a melamine salt is compatible with the approach of increasing melamine solubility with solvents such as acetals (e.g., methylal). However, the synergy advantage of using the two approaches jointly is not very marked. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 287–292, 2003  相似文献   

20.
Colloidal particles formation followed by their clustering have been shown to be the normal way of ageing of aminoplastic resins, namely urea–formaldehyde (UF) resins, melamine–formaldehyde (MF) resins, and melamine–urea–formaldehyde (MUF) resins. Ageing or further advancement of the resin by other means such as longer condensation times causes whitening of the resin. This is a macroscopic indication of both the formation of colloidal particles and of their clustering. It eventually progresses to resins, which are mostly in colloidal, clustered state, followed much later on by a supercluster formation starting to involve the whole resin. The initial, filament‐like colloidal aggregates formed by UF resins have different appearance than the globular ones formed by MF resins. MUF resins present a short rod‐like appearance hybrid between the two. GPC has been shown to detect the existence of colloidal superaggregates in a UF resin, while smaller aggregates might not be detected at all. The star‐like structures visible in the colloidal globules of MF resins are likely to be light interference patterns of the early colloidal structures in the resins. These star‐like interference patterns become more complex with resin ageing or advancement due to the advancement of the resin to more complex aggregates, to eventually reach the stage in which filament‐like and rod‐like structures start to appear. The next step is formation of globular masses that are representative of the true start of physical gelation. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1406–1412, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号