首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose acetate (CA) is widely used in membrane processes. In this study, CA (weight‐average molecular weight = 52,000) was mixed with poly(vinyl pyrrolidone) (PVP; weight‐average molecular weight = 15,000) as an additive in 1‐methyl‐2‐pyrrolidone as a solvent. The phase‐inversion method was used for the preparation of flat‐sheet membranes. The effects of PVP concentration and coagulation bath temperature (CBT) on the morphology, pure water permeation flux, and thermal stability of the prepared membranes were studied and are discussed in this article. The solute rejection of the developed CA membranes was quantified with an insulin protein solution. The results showed that an increase in the CBT levels from 0 to 23°C along with an increase in the PVP concentration in the cast film from 0 to 1.5 wt % resulted in an increase in the macrovoid formation in the membrane sublayer, an increase in the pure water flux (PWF), and a decrease in insulin rejection. Further increases in the PVP concentration from 1.5 to 3, 6, and 9 wt % resulted in gradual suppression of the macrovoid formation, a decrease in PWF, and an increase in insulin rejection. Higher PVP concentrations and lower CBT levels also appeared to result in higher glass‐transition temperatures. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Hydrophilic ultrafiltration membranes have been prepared by blending cellulose acetate (CA) as a matrix polymer with increasing concentrations of poly(vinylpyrrolidone) (PVP) using N,N′‐dimethylformamide as the solvent. It is observed that the presence of PVP beyond 50 wt % in the casting solution did not form membranes. Prepared membranes have been subjected to ultrafiltration characterizations such as compaction, pure water flux, water content, and membrane hydraulic resistance. The results indicate significant changes in the characteristics upon the addition of PVP, which may lead to improved performance. The porosity, pore size, and molecular weight cut‐off of the membranes also increase as the concentration of PVP increases. It is estimated that the pore radius of the CA/PVP membranes increases from 30 to 63 Å, when the concentration of PVP increased from 0 to 50 wt %. This is in agreement with the results obtained from scanning electron microscopic studies. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
Cellulose nanocrystals (CNCs) were used as a sustainable additive to improve the hydrophilicity, permeability, antifouling, and mechanical properties of blend membranes. Different CNC loadings (0–1.2 wt %) in cellulose acetate (CA) membranes were studied. The blend membranes were prepared by a phase‐inversion process, and their chemical structure and morphological properties were characterized by attenuated total reflectance–Fourier transform infrared spectroscopy, scanning electron microscopy, porosity, and mean pore size and contact angle measurement. The blend membranes became more porous and more interconnected after the addition of CNCs. The thickness of the top layer decreased and a few large holes in the porous substrate appeared with increasing CNC loading. In comparison with the pure CA membranes, the pure water flux of the blend membranes increased with increasing CNC loading. It reaches a maximum value of 76 L m?2 h?1 when the CNC loading was 0.5 wt %. The antifouling properties of the CA membrane were significantly improved after the addition of CNCs, and the flux recovery ratio value increased to 68% with the addition of 0.5 wt % CNCs. In comparison with that of the pure CA membranes, the tensile strength of the composite membranes increased by 47%. This study demonstrated the importance of using sustainable CNCs to achieve great improvements in the physical and chemical performance of CA ultrafiltration membranes and provided an efficient method for preparing high‐performance membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43946.  相似文献   

4.
Bacterial cellulose and alginate in an aqueous NaOH/urea solution were used as substrate materials for the fabrication of a novel blend membrane. The blend solution was cast onto a Teflon plate, coagulated in a 5 wt % CaCl2 aqueous solution, and then treated with a 1% HCl solution. Supercritical carbon dioxide drying was then applied for the formation of a nanoporous structure. The physical properties and morphology of the regenerated bacterial cellulose and blend membranes were characterized. The blend membrane with 80% bacterial cellulose/20 wt % alginate displayed a homogeneous structure and exhibited a better water adsorption capacity and water vapor transmission rate. However, the tensile strength and elongation at break of the film with a thickness of 0.09 mm slightly decreased to 3.38 MPa and 31.60%, respectively. The average pore size of the blend membrane was 10.60 Å with a 19.50 m2/g surface area. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The diffusive flux of NaCl and the hydraulic flux of pure water through coagulated cellulose acetate membranes are examined. Coagulated cellulose acetate membranes (without densification by heat treatment or drying) possess higher permeability than what may be expected from the permeabilities of the dry polymer. Their overall hydraulic permeability (ultrafiltration rate of water) is greatly dependent upon the membrane casting conditions and the resulting asymmetry of the membrane. On the other hand, the asymmetry of a membrane does not play as great a role in the diffusive permeability of a solute. With homogeneous membranes, higher diffusive flux is always accompanied by higher hydraulic permeability. With asymmetric membranes, this is not always true. The diffusive permeability of NaCl and the hydraulic permeability of water through coagulated cellulose acetate membranes can be controlled nearly independently. Consequently, high diffusive (NaCl) permeability with low hydraulic water permeability and vice versa can be obtained by varying the casting conditions and also by partially saponifying the denser portion of the membrane.  相似文献   

6.
A series of cellulose triacetate (CTA) membranes were prepared via thermally induced phase separation (TIPS) process with dimethyl sulfone (DMSO2) and polyethylene glycol (PEG400) as a crystallizable diluent and an additive, respectively. The phase separation behavior of CTA/DMSO2/PEG400 ternary system was investigated in detail by optical microscopy, differential scanning calorimetry and wide angle X‐ray diffraction. This ternary system dynamically undergoes solid‐solid phase separation and thus the CTA membranes possess cellular, lacy, plate‐, or even ellipse‐shaped pores. However, we can modulate the pore structure, porosity, water flux, and mechanical properties of the membranes by varying polymer concentration, composition of the mixed diluent, and cooling condition. Due to the intrinsic hydrophilicity, the prepared CTA membranes have better antifouling property than polysulfone membranes. These porous membranes were used as supports to fabricate thin‐film composite forward osmosis (FO) membranes, which show good water permeability and selectivity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44454.  相似文献   

7.
Modification of polymeric membrane materials by incorporation of hydrophilicity results in membranes with low fouling behavior and high flux. Hence, Polysulfone was functionalized by sulfonation and ultrafiltration membranes were prepared based on sulfonated polysulfone and cellulose acetate in various blend compositions. Polyethyleneglycol 600 was employed as a nonsolvent additive in various concentrations to the casting solution to improve the ultrafiltration performance of the resulting membranes. The total polymer concentration, cellulose acetate, and sulfonated polysulfone polymer blend composition, additive concentration, and its compatibility with polymer blends were optimized. The membranes prepared were characterized in terms of compaction, pure water flux, membrane resistance, and water content. The compaction takes place within 3–4 h for all the membranes. The pure water flux is determined largely by the composition of sulfonated polysulfone and concentration of additive. Membrane resistance is inversely proportional to pure water flux, and water content is proportional to pure water flux for all the membranes. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1749–1761, 2002  相似文献   

8.
Hollow-fiber (HF) membranes have the advantage of a higher packing density compared to flat-sheet and spiral-wound configurations. However, the low pressure tolerance of HF membranes limits their applications in nanofiltration (NF). In this study, reinforced thin-film composite (r-TFC) HF NF membranes were fabricated and evaluated in tests with water containing different salts and organic matter. Reinforced polysulfone ultrafiltration membranes were used as a support for a polyamide layer prepared from piperazine and trimesoyl chloride monomers. The interfacial polymerization conditions were optimized via selection of the trimesoyl chloride reaction time that gave the highest membrane performance. A specific permeate flux of 5.1 L m–2 h–1 bar–1, an MgSO4 rejection of 69%, and an NaCl rejection of 26% at a transmembrane pressure of 6 bars were obtained with the optimized r-TFC membranes. Performance studies with water characterized by synthetic solution demonstrated removals of the total organic carbon, ultraviolet absorbance at 254 nm, and turbidity in excess of 65, 80, and 90%, respectively. The results of this study illustrate the feasibility of manufacturing r-TFC HFs and using them in water-treatment applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48001.  相似文献   

9.
Microporous cellulose acetate membranes were prepared by a thermally induced phase separation (TIPS) process. Two kinds of cellulose acetate with acetyl content of 51 and 55 mol % and two kinds of diluents, such as 2‐methyl‐2,4‐pentandiol and 2‐ethyl‐1,3‐hexanediol, were used. In all polymer‐diluent systems, cloud points were observed, which indicated that liquid–liquid phase separation occurred during the TIPS process. The growth of droplets formed after the phase separation was followed using three cooling conditions. The obtained pore structure was isotropic, that is, the pore size did not vary across the membrane. In addition, no macrovoids were formed. These pore structures were in contrast with those usually obtained by the immersion precipitation method. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3951–3955, 2003  相似文献   

10.
Poly(vinylidene fluoride) (PVDF) membranes have been widely used in microfiltration and ultrafiltration because of their excellent chemical resistance and thermal properties. However, PVDF membranes have exhibited severe membrane fouling because of their hydrophobic properties. In this study, we investigated the antifouling properties of PVDF blended membranes. Antifouling PVDF blended membranes were prepared with a PVDF‐g‐poly(ethylene glycol) methyl ether methacrylate (POEM) graft copolymer. The PVDF‐g‐POEM graft copolymer was synthesized by the atom transfer radical polymerization (ATRP) method. The chemical structure and properties of the synthesized PVDF‐g‐POEM graft copolymer were determined by NMR, Fourier transform infrared spectroscopy, and gel permeation chromatography. To investigate the antifouling properties of the membranes, we prepared microfiltration membranes by using the phase‐inversion method, which uses various PVDF/PVDF‐g‐POEM concentrations in dope solutions. The pure water permeabilities were obtained at various pressures. The PVDF/PVDF‐g‐POEM blended membranes exhibited no irreversible fouling in the dead‐end filtration of foulants, including bovine serum albumin, sodium alginate, and Escherichia coli broth. However, the hydrophobic PVDF membrane exhibited severe fouling in comparison with the PVDF/PVDF‐g‐POEM blended membranes. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
In this work, influence of initial conditions and surface characteristics of porous support layer on structure and performance of a thin film composite (TFC) polyamide reverse osmosis (RO) membrane was investigated. The phase inversion method was used for casting of polysulfone (PSf) supports and interfacial polymerization was used for coating of polyamide layer over the substrates. The effect of PSf concentrations that varied between 16 wt % and 21 wt %, and kind of the solvent (DMF and NMP) used for preparation of initial casting solution were investigated on the properties of the final RO membranes. SEM imaging, surface porosity, mean pore radius, and pure water flux analysis were applied for characterization of the supports. The substrate of the membrane, which synthesized with 18 wt % of PSf showed the most porosity and the synthesized RO membrane had the lowest salt rejection. In case of the solvents, the membranes synthesized with DMF presented better separation performance that can be attributed to their lower thickness and sponge‐like structure. The best composition of support for TFC RO membranes reached 16 wt % PSf in DMF solvent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44444.  相似文献   

12.
Summary In this article, cellulose acetate produced through the homogeneous acetylation of sugar cane bagasse cellulose was used to produce membranes, using poly(ethyleneglycol) 600 (PEG 600) as an admixture. The membranes were characterized using water flux measurements (Payne’s cup), differential scanning calorimetry (DSC) and neutral red uptake (cytotoxicity). The results showed that PEG 600 acts as a crystallinity inductor and/or pore former in the cellulose acetate matrix. The induction of crystallinity is important for this system since it had not been reported on the literature yet. The results also demonstrated that the studied membranes present a nontoxic behavior.  相似文献   

13.
A process for purifying aqueous solutions containing macromolecular proteins such as bovine serum albumin (BSA), egg albumin (EA), pepsin, and trypsin has been investigated. Protein removal from food and biorelated industrial waste streams are gaining increased visibility due to environmental concern and saving precious materials. Ultrafiltration (UF) processes are largely being applied for protein separation from aqueous streams. In this work, an attempt has been made to separate the valuable proteins using cellulose acetate (CA)/sulfonated poly(ether imide) (SPEI) blend UF membranes prepared in the absence and presence of the additive, polyethyleneglycol (PEG600) in various compositions. The blend membranes were subjected to the determination of pore statistics and molecular weight cut‐off (MWCO). Porosity and pore size of the membranes increased with increasing concentrations of SPEI and PEG600 in the casting solution. Similarly, the MWCOs of the blend membranes ranged from 20 to greater than 69 kDa, depending on the various polymer blend compositions. Surface morphology of the blend membranes were analyzed using scanning electron microscopy. Studies were carried out to find the rejection and permeate flux of proteins. On increasing the concentration of SPEI and PEG600, the rejection of proteins is decreasing, whereas the permeate flux has an increasing trend. The effect of hydrophilicity of SPEI on fouling of protein for CA/SPEI blend membranes was also discussed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
A charged surface modifying macromolecule (cSMM) was synthesized, characterized by FT-IR spectroscopy and blended into the casting solution of cellulose acetate (CA) to prepare surface modified UF membranes by phase inversion technique. With an increasing cSMM additive content from 1 to 4 wt%, pure water flux (PWF) and water content (WC) were increases whereas the hydraulic resistance decreases. Surface characteristic study reveals that the surface hydrophilicity increased in cSMM modified CA membranes. The pore size and surface porosity of the 4 wt% cSMM blend CA membranes increases to 41.26 Å and 0.015%, respectively. Similarly, the molecular weight cut-off (MWCO) of the membranes ranged from 20 to 45 kDa, depending on the various compositions of the prepared membranes. Lower flux decline rate (47.2%) and higher flux recovery ratio (FRR) (89.0%), exhibited by 4 wt% cSMM blend membranes demonstrated its fouling resistant characteristic compared to pristine CA membrane.  相似文献   

15.
The electrochemical and electrokinetic aspects of cellulose acetate membranes of varying pore structure and desalting abilities have been investigated. The electrochemical studies included measurement of conductance and membrane potential for various membrane electrolyte systems. The electrokinetic characterization was made from streaming potential measurements. The data obtained are explained in terms of interfacial double layer phenomena prevalent in porous permselective barrier systems. The average pore diameter evaluated independently is also presented and an attempt has been made to understand the solute–water transport in terms of weak ionic character of membrane surface.  相似文献   

16.
Asymmetric and porous polysulfone (PSf) membranes were prepared by wet phase separation. Binary (PSf)/N,N‐dimethylacetamide (DMA) solutions with polymer concentrations of 12.5–30 wt % were cast in thicknesses of 80–700 μm and immersed in a coagulation bath of pure water. The morphology of the formed membranes' cross sections consisted of a cellular structure and macrovoids; the cellular structure density was highest when the cast solution contained about 21 wt % PSf, regardless of the cast thickness. The membranes' pure water permeability decreased as the cast thickness increased. The instantaneous onset of the turbidity, regardless of the PSf content and cast thickness, its steep growth, and relatively high end value were the main characteristics of the turbidity phenomena taking place during the formation of the protomembranes. Again, the membrane‐forming system with a PSf/DMA solution with about 21 wt % polymer, regardless of the cast thickness, had the highest turbidity end value. The shrinkage of the cast solutions into the corresponding protomembrane was also examined quantitatively. Inverse experiments showed that the direction of the gravitation field had no influence on the shrinkage of the membrane‐forming ternary system or the membranes' morphology and its water permeability. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1667–1674, 2005  相似文献   

17.
The performances of cellulose acetate membranes prepared with casting solutions, with acetone, dimethylformamide (DMF), and N‐methylpyrrolidone (NMP) as solvents, were studied in a series of methanol/methyl tertiary butyl ether separation experiments. The flux and selectivity of the membrane samples were affected by the type of solvent used to prepare the casting solution. The sample with DMF consistently gave the highest selectivity and lowest flux, followed by the samples with NMP and acetone. The differences in the performances were attributed to the effects of the volatility and evaporation rates of the solvents. Scanning electron microscopy and atomic force microscopy techniques were used for comparing the morphologies of the membranes. In addition, we used Raman spectroscopy as a novel technique to study the sorption selectivities of the membrane samples prepared with the three different solvents. In a parallel study, the relation between the polymer concentration in the casting solution and the morphology and performance of the membrane samples was studied. Under similar preparation conditions, the morphology of the membrane changed from being porous to being dense when the membrane was prepared with casting solutions with increasing polymer concentration. Also, the selectivity increased and the permeability decreased with increasing polymer concentration in the casting solution. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2882–2895, 2001  相似文献   

18.
Four lots of cellulose acetate (CA) membranes, modified with polyacrylic acid, using various plasticizers, and coated with polyaniline (PANI) were prepared. The morphology of the membranes was evaluated by using scanning electron microscopy, and the membranes showed larger pore size when the plasticizers were used. The electrical conductivity of the modified membranes and coated with PANI increased by two orders of magnitude when the plasticizer triphenyl phosphate was used. The strain at break improved by an order of magnitude and the glass transition temperature (Tg) showed an average decrease of 36°C when the membranes were plasticized. Finally, these membranes were tested as ion‐exchange materials of a gold‐iodide complex. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Physical and chemical modifications of polymeric ultrafiltration membranes are necessary to improve their hydrophilic properties, strength, and other characteristics. Microcrystalline cellulose (MCC) was prepared from cellulose pulp by acid‐catalyzed hydrolysis in the presence of ultrasonic radiation, and the properties of MCC were evaluated. Through the addition of MCC to a polysulfone (PS) membrane solution, a casting solution of a PS/MCC blend was obtained. Subsequently, the ultrafiltration membrane from the blend was further developed in a phase‐inversion process comprising immersion and deposition. The capacity for ultrafiltration was better with increasing MCC content. When the ratio of MCC to PS was 0.3, the pure water flux of the composite membrane reached 234.2 L/m2/h, and the retention of a bovine serum albumin solution (1 g/L) was as high as 93.4%. The membranes were also observed with scanning electron microscopy and atomic force microscopy to study their microstructures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Porous membranes were prepared through the thermally induced phase separation of poly(ethylene‐co‐vinyl alcohol) (EVOH)/glycerol mixtures. The binodal temperature and dynamic crystallization temperature were determined by optical microscopy and differential scanning calorimetry measurements, respectively. It was determined experimentally that the liquid–liquid phase boundaries were shifted to higher temperatures when the ethylene content in EVOH increased. For EVOHs with ethylene contents of 32–44 mol %, liquid–liquid phase separation occurred before crystallization. Cellular pores were formed in these membranes. However, only polymer crystallization (solid–liquid phase separation) occurred for EVOH with a 27 mol % ethylene content, and the membrane morphology was the particulate structure. Scanning electron microscopy showed that the sizes of the cellular pores and crystalline particles in the membranes depended on the ethylene content in EVOH, the polymer concentration, and the cooling rate. Furthermore, the tendency of the pore and particle sizes was examined in terms of the solution thermodynamics of the binary mixture and the crystallization kinetics. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 853–860, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号