首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amberlite XAD‐2 has been functionalized by coupling through –SO2‐with ethylenediamine, propylenediamine, and diethylenetriamine to give the corresponding polyamine chelating resins I–III. The solid metallopolymer complexes of the synthesized chelating resins with Cu2+, Zn2+, Cd2+, and Pb2+ were synthesized. The polyamine derivatives and their metal complexes were characterized by elemental analysis, spectral (IR, UV/V, and ESR), and magnetic studies. The batch equilibrium method was utilized for using the chelating polyamines for the removal of Cu+2, Zn+2, Cd+2, and Pb+2 ions from aqueous solutions at different pH values and different shaking times at room temperature. The selective extraction of Cu+2 from a mixture of the four metal ions and the metal capacities of the chelating resins were evaluated using atomic absorption spectroscopy. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1839–1846, 2005  相似文献   

2.
Polypropylene (PP) was modified by radical grafting of acrylic acid (AA) in the melt by using dicumyl peroxide (DCP) as initiator. To reach a high grafting degree (GD) without substantially modifying PP‐chain structure, a few runs were carried out by employing butyl 3‐(2‐furanyl)propenoate (BFA), which is a coagent able to preserve the molecular weight (MW) of PP macromolecules in the presence of radical grafting reagents. All the samples were extracted with selective solvents to remove unreacted chemicals and free poly(acrylic acid) (PAA), and the GD was accurately determined by using the FTIR methodology. The GD ranged from 1.51 to 4.67 mol %. High‐temperature size permeation chromatography analysis was used to evaluate MW behavior, confirming the control exerted by the presence of BFA on the degradation reactions. DSC, TGA, and SEM analyses were performed to analyze the chemical modification effects on the polymer products' thermal and morphological properties. Finally, selected samples, with a particle size distribution in the range 100–850 μm, were tested as metal ion adsorption resins. Al(III), Cr(III), Zn(II), Cd(II), Pb(II), and Hg(II) were studied, and the highest adsorption efficiency values (in percentage) were obtained for Al(III) (15–20%) and Hg(II) (25–30%). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
The crosslinked poly(1‐vinylimidazole‐co‐acrylic acid), P(VIm‐co‐AA), and poly(1‐vinylimidazole‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) P(VIm‐co‐APSA) were synthesized by radical polymerization and tested as adsorbents under competitive and noncompetitive conditions for Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), and Cr(III) by batch equilibrium procedure. The resin–metal ion equilibrium was achieved before 1 h. The resin P(VIm‐co‐AA) showed a maximum retention capacity (MRC) value for Pb(II) at pH 3 and Hg(II) at pH 1 of 1.1 and 1.2 mEq/g, respectively, and the resin P(VIm‐co‐AA) showed at pH 3 the following MRC values: Hg(II) (1.5 mEq/g), Cd(II) (1.9 mEq/g), Zn(II) (2.7 mEq/g), and Cr(III) (2.8 mEq/g). The recovery of the resin was investigated at 25°C with 1 M and 4 M HNO3 and 1 M and 4 M HClO4. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2852–2856, 2003  相似文献   

4.
Glycidyl methacrylate–based resin crosslinked beads with acetamide functions were demonstrated to be efficient in the removal of mercury. Beaded polymer supports were prepared by suspension polymerization of glycidyl methacrylate (0.9 mol) and ethylene glycol dimethacrylate (0.1 mol). The resulting copolymer beads were modified through epoxy functions in two steps: (1) by treatment with excess dibutyl amine and (2) by subsequent reaction with chloroacetamide. The resulting polymer resin, which had a chloroacetamide content of 2.5 mmol/g, was effective in extracting mercury from aqueous solutions. The mercury sorption capacity was around 2.2 mmol/g in nonbuffered conditions. Experiments performed in identical conditions with several metal ions revealed that Cd(II), Pb(II), Zn(II), and Fe(III) ions also were extractable in low quantities (0.2–0.8 mmol/g). The sorbed mercury could be eluted by repeated treatment with hot acetic acid without hydrolysis of the amide groups. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 348–352, 2006  相似文献   

5.
Two resins were synthesized by radical polymerization using N,N′‐methylene‐bis‐acrylamide and ammonium persulfate as the crosslinking reagent and initiator, respectively. The yields were 98%. The resins were characterized by FTIR and UV‐Vis spectroscopy. Sorption behavior of resins toward Hg(II), Cd(II), Zn(II), Pb(II), and Cr(III) ions was studied at different pHs depending on the metal ion. Both resins showed selective sorption to Hg(II) ions at pH 2 from a mixture of all ions.The elution of Hg(II) bound to the resins was also investigated using perchloric acid at different concentrations. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1251–1256, 2002; DOI 10.1002/app.10455  相似文献   

6.
Hydrophilic thermosensitive copolymer beads having phosphinic acid groups were prepared by suspension copolymerization of acryloyloxypropyl n‐octylphosphinic acid (APPO), N‐isopropyl acrylamide (NIPAAm), and tetraethyleneglycol dimethacrylate (4G). The thermosensitivity and the adsorption ability of the copolymer beads for metal ions beads were studied. The APPO‐NIPAAm‐4G copolymer beads were obtained in a good yield by suspension copolymerization of monomers (APPO, NIPAAm, and 4G) dissolved in chloroform, in a saturated Na2SO4 aqueous solution in the presence of surfactant and MgCO3. The APPO‐NIPAAm‐4G copolymer beads had higher adsorption ability for lanthanide metal ions (Eu3+, Sm3+, Nd3+, or La3+) than for main transition metal ions (Cu2+, Ni2+, or Co2+). Furthermore, it was also found that the APPO‐NIPAAm‐4G copolymer beads had selective adsorption ability between lanthanide metal ions, and the order of adsorption ability for lanthanide metal ions was as follows: Eu3+ > Sm3+ > Nd3+ > La3+. The selective adsorption for these metal ions from their mixed solutions was performed by both a batch method and a column method. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 449–460, 2006  相似文献   

7.
The aim of this work was the synthesis of macroporous resins with large specific surface areas through the use of organic solvents (known as porogens or pore‐forming agents) for applications in hexavalent chromium (Cr+6) removal operations. The synthesis of these materials by suspension polymerization allowed the generation of macroporous structures. The comonomers 4‐vinylpyridine and divinylbenzene were considered in different ratios. Poly(vinyl alcohol) was used as a suspension agent in a mixture of toluene and hexane. The materials produced were characterized with Fourier transform infrared spectroscopy, elemental analysis, thermogravimetry, nitrogen adsorption, and scanning electron microscopy. The macroporous resin with the largest surface area (130 m2/g) was thermally stable up to 300°C and had a structure that included spherical domains with a mean diameter of 68 μm, uniform porosity, and expected high sorption capability. The sorption properties of the resins were evaluated for applications in water‐treatment operations to eliminate Cr+6 ions at a pH near 7. The advantages of these materials were their high removal capability, high selectivity, and fast adsorption kinetics at a pH 6.5. An aqueous solution of 4 ppm K2Cr2O7 was used to quantify the Cr+6 content by ultraviolet–visible spectroscopy. A remarkable sorption level (94%) of chromate ions (Cr+6) was obtained during a 15‐h period for the resin with the highest pyridine group content. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

8.
Macroporous methyl methacrylate–divinylbenzene copolymer beads having diameter ~ 300 μm were synthesized by free radical suspension copolymerization. The macroporosity was generated by diluting the monomers with inert organic liquid diluents. The macroporosity was varied in the range of ~0.1 to ~ 1.0 mL/g by varying a number of porosity controlling factors, such as the diluents, solvent to nonsolvent mixing ratios when employing a mixture of the two diluents, degree of dilution, and crosslinkage. Increase in pore volume from 0.1 to 0.45 mL/g resulted in a sharp increase in mesopores having diameters in the range of 3–20 nm whereas the macropores remained negligible when compared with mesopores. Increase in pore volume from 0.45 to 1 mL/g resulted in a sharp increase in macropores, whereas mesopores having diameters in the range of 3–20 nm remained almost constant. The mesopores having diameters in the range of 20–50 nm showed an increase with the increase in pore volume throughout the whole range of pore volume studied. Macroporosity characteristics, i.e., pore volume (Vm), surface area (SA), and pore size distributions were evaluated by mercury penetration method. Statistical analysis of the data obtained in the present study shows that the macroporosity characteristics can be estimated with a reasonable accuracy from the pore volumes, which in turn are determined from the densities of the copolymers. These results are explained on the basis of pore formation mechanism. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Phenolic Schiff bases derived from o‐, m‐, and p‐hydroxybenzaldehydes and 4, 4′‐diaminodiphenyl ether were subjected to polycondensation reaction with formaldehyde. The resins were found to form polychelates readily with several metal ions. The materials were characterized by elemental analysis, GPC, IR, UV‐Vis, 1H‐NMR, XRD, and thermal analyses like TG, DTG, and DSC studies. The 1H‐NMR spectra of the resins provided evidence of polycondensation with well‐defined peaks for bridging methylene and terminal methylol functions. The metal‐ligand bonds were registered in the IR spectra of the polychelates. The thermal analysis data provided the kinetic parameters like activation energy, frequency factor, and entropy changes associated with the thermal decomposition. These data indicated the resins to be more stable than the polychelates. The DSC and XRD data indicated that the incorporation of metal ions significantly enhanced the crystallinity of the polymers. The resins could adsorb several metal ions from dilute aqueous solutions. Adsorption characteristics of the resins towards Cu(II) and Ni(II) were studied spectrophotometrically both in competitive and noncompetitive conditions. The effects of pH, contact time, quantity of the sorbent, concentration of the metal ions in a suitable buffer medium were studied. The resins were found to be selective for Cu(II) leading to its separation from a mixture of Cu(II) and Ni(II). © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 967–981, 2000  相似文献   

10.
大孔树脂与黄酮类化合物的固液界面吸附性能的研究   总被引:7,自引:0,他引:7  
通过比较D101-A、D138、DM-130这3种大孔树脂和聚酰胺树脂对苦荞粉提取液中黄酮类化合物的静态、动态吸附及解吸性能,并研究其相应的静态吸附动力学过程和黄酮类化合物的浓度对吸附性能的影响,以选择最佳的吸附树脂。试验结果表明:D-101A、D138、DM-130大孔树脂和聚酰胺树脂这4种树脂对黄酮类化合物的吸附能力非常接近,都可用来作为黄酮类化合物的吸附剂。  相似文献   

11.
Methyl methacrylate‐divinylbenzene copolymer beads were synthesized by radical suspension polymerization. The effects of the divinylbenzene concentration and the composition of the toluene/heptane diluent were studied with regard to the polymer bead formation, surface morphology, solvent swelling ratio, and absorption kinetics. The crosslinking density and diluent composition were responsible for solvent swelling. The interaction between the polymer and the diluents is attributed to phase separation, which controls the formation of a network‐type or pore‐type polymer, or a combination. For the optimum bead swelling in toluene, a combined morphology of more flexible polymer networks and a small amount of pores is essential for the desired absorption–desorption behavior. Dynamic swelling behavior of the polymer beads was elucidated. The mechanism of toluene transport into the beads became more a relaxation control. POLYM. ENG. SCI., 47:447–459, 2007. © 2007 Society of Plastics Engineers.  相似文献   

12.
In comparison with conventional chemical treatment methods for Fe(II) ions, adsorption and ion exchange are considered more easily applicable and economical, depending on the material used. Polymeric materials are the examples used in these commonly applied removal processes. In this study, the adsorption of Fe(II) ions from aqueous solutions onto two different natural polymers, insoluble humic acids (IHAs) extracted from low‐grade lignites from Beysehir and Ermenek (in the central Anatolia region, Konya, Turkey), was investigated. The IHAs were synthesized through a series of acid–base reactions, and the obtained precipitates were chemically stable and had about 40% humic matter together with functional carboxyl and hydroxyl groups. The effects of the time and initial metal concentration on the effectiveness of the IHAs for Fe(II) adsorption were determined through batch experiments; the adsorption isotherms and capacities were calculated. The IHAs were effective, with capacities of 59 mg/g for the Beysehir IHA and 57 mg/g for the Ermenek IHA, for Fe removal under neutral pH conditions. The adsorption followed mainly a Freundlich isotherm for both IHAs, and the calculated adsorption rates were 0.86 for the Beysehir IHA and 0.81 for the Ermenek IHA. This indicated that the effectiveness of the Beysehir IHA was slightly higher than that of the Ermenek IHA. The results confirmed the real possibility of the practical application of IHAs for the separation of Fe(II) in aqueous systems. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
A novel macroporous poly(glycidyl methacrylate‐triallyl isocyanurate‐ethyleneglycol dimethacrylate) copolymer, hereinafter PGMA‐TAIC‐EGDMA, of controlled bead size was prepared via free radical suspension copolymerization. The effects of varying the concentration of crosslinking agents and porogenic diluent on the average pore diameter, pore size distributions, specific surface area, and pore volume of the copolymer matrix were thoroughly investigated. The spherical beads were characterized by elemental analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The specific pore volume, average pore diameter, pore size distribution, and the specific surface area were measured by Mercury intrusion porosimetry and BET adsorption method, respectively. The porous properties of the polymer matrix are a direct consequence of the amount and quality of the porogenic solvent, the percentage of crosslinking monomers, and the ratio between the monomers and porogen phases. When the polymer was prepared at 30 and 40% crosslinking density, and 75 and 100% diluents, respectively, it showed a fine beads morphology, mechanical stability and pore size distributions. By comparing the copolymers PGMA‐TAIC‐EGDMA and PGMA‐EGDMA, it was found that the former is more stable both thermally and mechanically than its predecessor. The presence of epoxide functionalities of macroporous PGMA‐TAIC‐EGDMA beads makes it a versatile carrier. The resulting polymers have the potential for wide applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
The synthesis, characterization, and metal ion uptake studies of two chelating resins with multiple functional groups are reported. The chelating resins were synthesized by condensing a phenolic Schiff base derived from 4,4′‐diaminodiphenylmethane and o‐hydroxyacetophenone with formaldehyde or furfuraldehyde. The resins readily absorbed transition metal ions, such as Cu2+ and Ni2+, from dilute aqueous solutions. The Schiff base, resins, and metal polychelates were characterized by various instrumental techniques, such as elemental‐analysis, ultraviolet–visible spectroscopy proton and carbon‐13 nuclear magnetic resonance spectroscopy (1H‐NMR and 13C‐NMR, respectively), X‐ray diffraction (XRD), and thermogravimetric–differential thermogravimetric analyses (TG–DTG). The 1H‐NMR and 13C‐NMR studies were used to determine the sites for aldehyde condensation with the phenolic moiety. Fourier transform infrared data provided evidence for metal–ligand bonding. Thermogravimetric analysis was employed to compare the relative thermal stabilities of the resins and the polychelates. The TG data were fitted into different models and subjected to computational analysis to calculate the kinetic parameters. The XRD data indicate that the incorporation of metal ion into the resin matrix significantly enhanced the degree of crystallinity of the material. The extent of metal‐ion loading into the resins was studied in competitive and noncompetitive conditions, varying the time of contact, metal ion concentrations, and pH of the reaction medium in a suitable buffer medium. The furfuraldehyde‐condensed resin was more effective in removing metal ions than the formaldehyde‐condensed resins. The resins were selective for Cu2+, resulting in separation of Cu2+ and Ni2+ from the mixture at pH 5.89. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 570–581, 2003  相似文献   

15.
A series of new chelate resins were synthesized by ring‐opening polycondensation of the reaction mixture of furfural with diethanolamine, using sulfuric acid as a catalyst, and the resulting chelate resins were employed in the adsorption for metal ions Bi, In, Sn, V, Ga, Y, Ti, and Pb. The composition, structure, and properties of the resulting chelate resin were studied by means of fourier transform infrared (FTIR), electron paramagnetic resonance spectrum (EPR), and elemental analysis methods. Meanwhile, the adsorption properties of the resulting chelate resins for the above metal ions were investigated by inductively‐coupled plasma–atomic emission spectrometry (ICP‐AES) procedures. The results show that the resulting chelate resins hold the structure consisting of hydroxyl groups, amine groups, and conjugated π bonds, as well as more crosslinkages, and so they exhibit a good reactivity and chemical stability. The adsorption experiments show that the chelate resins could well adsorb V, Ga, Y, Ti, and Pb in a wider acidity range and exhibit a good adsorption selectivity. Particularly, the chelate resins could adsorb and desorb for Pb, Bi, In, V, Y, and Ti, quantitatively, in the given conditions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1620–1626, 2006  相似文献   

16.
Two macroporous acrylonitrile/10% vinyl acetate/10% divinylbenzene copolymers as beads were obtained by the aqueous suspension copolymerization of the three comonomers in the presence of toluene as a diluent, which was used in two different amounts. These copolymers were chemically modified by their reactions with ethylenediamine, diethylenetriamine, and triethylenetetramine in the presence of water when the aminolysis–hydrolysis reaction of the nitrile groups and the hydrolysis reaction of the acetate groups occurred. From these reactions, weak‐base anion exchangers with high ion‐exchange capacities, between 1.6 and 2.2 mequiv/mL and 6.5 and 10.5 mequiv/g, were obtained. For these anion exchangers, the behaviors in the retention processes of the Ni(II), Cd(II), and Pb(II) cations were evaluated with the bath method. All the resins exhibited retention properties, but the retained amounts of the metal cations differed as a function of the resin and cation nature. Thus, the resin from the reaction with triethylenetetramine of the copolymer obtained in the presence of a larger amount of toluene could be considered the most suitable sorbent for the three metal cations, especially for Ni(II). Its maximum retention capacity for this cation was 2.67 mequiv/g of dried resin. From the noncompetitive and competitive retentions was observed the following selectivity order: Ni(II) > Cd(II) > Pb(II). The retention took place by the chelating processes between the functional groups with the ligand role, especially free amine groups, and metal cations. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 930–938, 2005  相似文献   

17.
Crosslinked acrylate resin were prepared by the radical polymerization of poly(ethylene glycol) diacrylate (ADE400) with 2,2′‐azobisisobutyronitrile in the presence of cobalt (II) chloride at 100°C for 48 h. Metallization behavior of the CoCl2‐containing acrylate resin by reduction with aqueous sodium tetrahydroborate solution at 25°C was investigated by means of infrared spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy, and electron probe microanalysis. As a result, the surface of the crosslinked acrylate resin was successfully metallized by the reduction, and the cobalt layer generated at the side of a polypropylene plate used in the preparation of film was thicker and smoother than the air side. Most of the chlorine ion in the film passed in the reduction solution. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3864–3868, 2004  相似文献   

18.
The adsorption of metal ions (Mo6+, Cu2+, Fe2+, and Fe3+) was examined on chemically modified chitosans with a higher fatty acid glycidyl (CGCs), and the adsorption of Cu2+ was examined on ethylenediamine tetraacetic acid dianhydride modified CGCs (EDTA‐CGCs) synthesized by the reaction of the CGCs with ethylenediamine tetraacetic acid dianhydride. The adsorption of phosphate ions onto the resulting substrate/metal‐ion complex was measured. Mo6+ depicted remarkable adsorption toward the CGCs, although all the Mo6+ was desorbed under the adsorption conditions of the phosphate ions. The other metal ions were adsorbed to some extent on CGCs by chelating to the amino group in the substrate, except for CGC‐1, which had the highest degree of substitution (83.9%). Considerable amounts of Fe2+ were adsorbed onto CGCs; however, only a limited number of phosphate ions was adsorbed onto the substrate/metal‐ion complex. As a result, the following adsorbent/metal‐ion complexes gave higher adsorption ability toward phosphate ions: CGC‐4/Cu2+, CGC‐4/Fe3+, and EDTA‐CGC‐3/Fe3+. Where, CGC‐3 is a chemically modified chitosan with the degree of substitution of 26.5 percentage, and CGC‐4 is one with the degree of substitution of 16.0 percentage. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Using the batch method, the retention of Ga(III) from HCl solutions by two gel‐type pyridine strong‐base anion exchangers containing 1‐methyl‐ or 1‐butyl‐4‐vinylpyridinium chloride structural units, called S1 and S2 resins, respectively, was studied. The influence of the HCl and Ga(III) concentrations as well as of the contact time between the resin and the liquid phase was investigated. The parameters, which characterize the retention process, were estimated using Langmuir and Freundlich isotherms. Both resins exhibited a higher affinity for gallium ions from a 6M HCl solution. According to Langmuir isotherms, maximum retention capacities of 44.44 and 60 mg Ga(III)/g dry resin for the S1 and S2 resins, respectively, were obtained. Freundlich isotherms provide additional proof for a higher affinity of the S2 resin for Ga(III) from HCl solutions. It is clear that the substituent length increase on N+ atoms led to an increasing affinity of the pyridine strong base anion exchangers toward Ga(III). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3440–3444, 2002  相似文献   

20.
The crosslinked poly[N‐(3‐dimethylamino)propylmethacrylamide] [P(NDAPA)] and poly[N‐(3‐dimethylamino)propylmethacrylamide‐co‐acrylic acid] [P(NDAPA‐co‐AA)] were synthesized by radical polymerization. The resins were completely insoluble in water. The metal‐ion‐uptake properties were studied by a batch equilibrium procedure for the following metal ions: silver(I), copper(II), cadmium(II), zinc(II), lead(II), mercury(II), chromium(III), and aluminum(III). The P(NDAPA‐co‐AA) resin showed a lower metal‐ion affinity than P(NDAPA), except for Hg(II), which was retained at 71% at pH 2. At pH 5, the resin showed a higher affinity for Pb(II) (80%) and Cu(II) (60%), but its affinity was very low for Zn(II) and Cr(III). The polymer ligand–metal‐ion equilibrium was achieved during the first 20 min. By changing the pH, we found it possible to remove between 60 and 70% of Cd(II) and Zn(II) ions with (1M, 4M) HClO4 and (1M, 4M) HNO3. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5232–5239, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号