首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Star‐block copolymers comprised of poly(styrene) (S) core and four poly(ε‐caprolacton) (ε‐CL) arms were synthesized by the combination of free radical polymerization (FRP) of S and ring opening polymerization (ROP) of ε‐CL in one‐step in the presence of tetrafunctional ineferter. The block copolymers were characterized by 1H‐NMR and FTIR spectroscopy, gel permeation chromatography (GPC), and fractional precipitation method. 1H ‐NMR and FTIR spectroscopy and GPC studies of the obtained polymers indicate that star‐block copolymers easily formed as result of combination FRP and ROP in one‐step. The γ values (solvent/precipitant volume ratio) were observed between 1.04–2.72 (mL/mL) from fractional measurements. The results show that when the initial S feed increased, the molecular weights of the star‐block copolymers also increased and the polydispersities of the polymers decreased. Mw/Mn values of the products were measured between 1.4 and 2.86 from GPC. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Novel, monodispersed, and well‐defined ABA triblock copolymers [poly(dimethylamino ethyl methacrylate)–poly(ethylene oxide)–poly(dimethylamino ethyl methacrylate)] were synthesized by oxyanionic polymerization with potassium tert‐butanoxide as the initiator. Gel permeation chromatography and 1H‐NMR analysis showed that the obtained products were the desired copolymers with molecular weights close to calculated values. Because the poly(dimethylamino ethyl methacrylate) block was pH‐ and temperature‐sensitive, the aqueous solution behavior of the polymers was investigated with 1H‐NMR and dynamic light scattering techniques at different pH values and at different temperatures. The micelle morphology was determined with transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Diblock copolymers of poly(L ‐lactide)‐block‐poly(methyl methacrylate) (PLLA‐b‐PMMA) were synthesized through a sequential two‐step strategy, which combines ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), using a bifunctional initiator, 2,2,2‐trichloroethanol. The trichloro‐terminated poly(L ‐lactide) (PLLA‐Cl) with high molecular weight (Mn,GPC = 1–12 × 104 g/mol) was presynthesized through bulk ROP of L ‐lactide (L ‐LA), initiated by the hydroxyl group of the double‐headed initiator, with tin(II) octoate (Sn(Oct)2) as catalyst. The second segment of the block copolymer was synthesized by the ATRP of methyl methacrylate (MMA), with PLLA‐Cl as macroinitiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst, and dimethyl sulfoxide (DMSO) was chosen as reaction medium due to the poor solubility of the macroinitiator in conventional solvents at the reaction temperature. The trichloroethoxyl terminal group of the macroinitiator was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy. The comprehensive results from GPC, FTIR, 1H‐NMR analysis indicate that diblock copolymers PLLA‐b‐PMMA (Mn,GPC = 5–13 × 104 g/mol) with desired molecular composition were obtained by changing the molar ratio of monomer/initiator. DSC, XRD, and TG analyses establish that the crystallization of copolymers is inhibited with the introduction of PMMA segment, which will be beneficial to ameliorating the brittleness, and furthermore, to improving the thermal performance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Utilization of a flow reactor under high pressure allows highly efficient polymer synthesis via reversible addition–fragmentation chain‐transfer (RAFT ) polymerization in an aqueous system. Compared with the batch reaction, the flow reactor allows the RAFT polymerization to be performed in a high‐efficiency manner at the same temperature. The adjustable pressure of the system allows further elevation of the reaction temperature and hence faster polymerization. Other reaction parameters, such as flow rate and initiator concentration, were also well studied to tune the monomer conversion and the molar mass dispersity (?) of the obtained polymers. Gel permeation chromatography, nuclear magnetic resonance (NMR), and Fourier transform infrared spectroscopies (FTIR) were utilized to monitor the polymerization process. With the initiator concentration of 0.15 mmol L?1, polymerization of poly(ethylene glycol) methyl ether methacrylate with monomer conversion of 52% at 100 °C under 73 bar can be achieved within 40 min with narrow molar mass dispersity (D) ? (<1.25). The strategy developed here provides a method to produce well‐defined polymers via RAFT polymerization with high efficiency in a continuous manner. © 2017 Society of Chemical Industry  相似文献   

5.
Well‐defined polydimethylsiloxane‐block‐polystyrene (PDMS‐b‐PS) diblock copolymers were prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization using a functional PDMS‐macro RAFT agent. The RAFT polymerization kinetics was simulated by a mathematical model for the RAFT polymerization in a batch reactor based on the method of moments. The model described molecular weight, monomer conversion, and polydispersity index as a function of polymerization time. Good agreements in the polymerization kinetics were achieved for fitting the kinetic profiles with the developed model. In addition, the model was used to predict the effects of initiator concentration, chain transfer agent concentration, and monomer concentration on the RAFT polymerization kinetics. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Poly{[(N,N‐(dimethylamino)ethyl methacrylate]‐co‐(methyl methacrylate)} copolymers of various compositions were synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization at 70 °C in N,N‐dimethylformamide. The polymer molecular weights and molecular weight distributions were obtained from size exclusion chromatography, and they indicated the controlled nature of the RAFT polymerizations; the polydispersity indices are in the range 1.1–1.3. The reactivity ratios of N,N‐(dimethylamino)ethyl methacrylate (DMAEMA) and methyl methacrylate (MMA) (rDMAEMA = 0.925 and rMMA = 0.854) were computed by the extended Kelen–Tüdös method at high conversions, using compositions obtained from 1H NMR. The pH‐ and temperature‐sensitive behaviour were studied in aqueous solution to confirm dual responsiveness of these copolymers. The thermal properties of the copolymers with various compositions were investigated by differential scanning calorimetry and thermogravimetric analysis. The kinetics of thermal degradation were determined by Friedmann and Chang techniques to evaluate various parameters such as the activation energy, the order and the frequency factor. © 2012 Society of Chemical Industry  相似文献   

7.
A single‐site ethyl aluminum complex, [2,2‐ diethyl‐1,3‐propylenebis(3,5‐di‐tert‐butyl‐salicylideneiminato)] ethyl aluminum (2), with a geminal diethyl substitutent on the diamino bridge was synthesized by the reaction of AlEt3 with 1 equiv of N,N′‐(2,2‐diethyl‐1,3‐propylene)bis(3,5‐di‐tert‐butylsalicylideneimine). X‐ray diffraction showed that complex 2 contained a five‐coordinate aluminum atom with a distorted trigonal bipyramidal geometry in the solid state. 1H‐NMR and 13C‐NMR spectra indicated that the two conformational enantiomers of 2 tautomerized quickly on the NMR timescale in solution. In the presence of isopropyl alcohol, the ring‐opening polymerization (ROP) of rac‐lactide with complex 2 produced a crystalline stereoblock polylactide (PLA). The stereoblocks contained an average of 12 units (L? = 12) of enantiomerically pure lactic acid. There was a linear relationship between the monomer conversion and number‐average molecular weights of the polymer. An induction period was observed for the polymerization. The induction period increased with decreasing concentration of catalyst 2 and isopropyl alcohol. In the presence of poly(ethylene glycol) (PEG), a PLA/PEG/PLA stereocomplex was prepared directly by the ROP of rac‐lactide with complex 2, which was confirmed by NMR, gel permeation chromatography, wide‐angle X‐ray diffraction, and differential scanning calorimetry. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 102–108, 2005  相似文献   

8.
Free‐radical polymerization of p‐cumyl phenyl methacrylate (CPMA) was performed in benzene using bezoyl peroxide as an initiator at 80°C. The effect of time on the molecular weight was studied. Functional copolymers of CPMA and glycidyl methacrylate (GMA) with different feed ratios were synthesized by free‐radical polymerization in methyl ethyl ketone at 70°C, and they were characterized by FTIR and 1H‐NMR spectroscopy. The molecular weights and polydispersity indexes of the polymers and copolymers were determined by gel permeation chromatography. The copolymer composition was determined by 1H‐NMR. The glass‐transition temperature of the polymer and the copolymers was determined by differential scanning calorimetry. The reactivity ratios of the monomers were determined by the Fineman–Ross and Kelen–Tudos methods. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 336–347, 2005  相似文献   

9.
A series of amphiphilic poly(N‐vinyl carbazole) (PVK) block copolymers containing tris(8‐hydroxyquinoline) aluminum (Alq3) have been synthesized via reversible addition‐fragmentation chain transfer (RAFT) radical polymerization with trithiocarbonate terminated polyethylene glycol (PEG) as a RAFT agent. The chemical structures of the block copolymers have been identified by 1H nuclear magnetic resonance and Fourier transform infrared spectrometer. The analysis of gel permeation chromatography indicates that the polydispersity indices of the block copolymers are lower than 1.30. The results of thermogravimetric analysis show that the decomposition temperatures of the copolymers are higher than 330 °C. The optical properties of the copolymers have been investigated and the obviously enhanced emission from Alq3 has been found due to resonance energy transfer from PVK to Alq3. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44573.  相似文献   

10.
Reversible addition–fragmentation chain transfer (RAFT) polymerization of less‐activated monomers in a controlled fashion is challenging due to the high reactivity and instability of the propagating radicals. We have designed dithiocarbamate‐based RAFT agents with morpholine as activating ‘Z’ group and benzyl, ethyl(1‐ethanoate)yl, ethyl(2‐propanoate)yl and cyanomethyl as ‘R’ leaving groups and investigated them for the reversible deactivation radical polymerization of vinyl acetate (VAc) and N‐vinylimidazole (N‐VIm). RAFT polymerization of VAc and N‐VIm at 70 °C using azobisisobutyronitrile as a free radical initiator proceeded in a controlled fashion as demonstrated by a linear increase in molar mass with conversion. Interestingly, the polymerization of VAc followed fast kinetics (approx. 60 min) with good to moderate control affording high‐molar‐mass poly(VAc) polymers. Furthermore, the synthesized chain transfer agents were able to polymerize N‐VIm under controlled conditions. The morpholine RAFT agents bearing cyanomethyl and ethyl(2‐propanoate)yl leaving groups showed better control of the polymerization of VAc and N‐VIm compared to the others. © 2020 Society of Chemical Industry  相似文献   

11.
Narrow‐distribution, well‐defined comb‐like amphiphilic copolymers are reported in this work. The copolymers are composed of poly(methyl methacrylate‐co‐2‐hydroxyethyl methacrylate) (P(MMA‐co‐HEMA)) as the backbones and poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) as the grafted chains, with the copolymer backbones being synthesized via atom‐transfer radical polymerization (ATRP) and the grafted chains by oxyanionic polymerization. The copolymers were characterized by gel permeation chromatography (GPC), Fourier‐transform infrared (FT‐IR) spectroscopy and 1H NMR spectroscopy. The aggregation behavior in aqueous solutions of the comb‐like amphiphilic copolymers was also investigated. 1H NMR spectroscopic and surface tension measurements all indicated that the copolymers could form micelles in aqueous solutions and they possessed high surface activity. The results of dynamic light scattering (DLS) and scanning electron microscopy (SEM) investigations showed that the hydrodynamic diameters of the comb‐like amphiphilic copolymer aggregates increased with dilution. Because of the protonizable properties of the graft chains, the surface activity properties and micellar state can be easily modulated by variations in pH. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
A new amphiphilic Y‐shaped copolymer, comprised of hydrophobic Poly(trimethylene carbonate) (PTMC) and hydrophilic Poly(N,N‐dimethylamino‐2‐ethyl methacrylate) (PDMAEMA), was designed and synthesized by a combination of atom transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP) using a new heterofunctional initiator, Br‐Init‐(OH)2, bearing one initiation site for ATRP and two for ROP. At first, a new trifunctional core molecule bearing hydroxyl group and bromine moieties, Br‐Init‐(OH)2, was synthesized via protection followed by esterification reaction of 5‐ethyl‐5‐hydroxymethyl‐2,2‐dimethyl‐1,3‐dioxane with 2‐bromoisobutyryl bromide and deprotection. In the presence of trifunctional core molecule, Br‐Init‐(OH)2, target Y‐shaped miktoarm star copolymers, (PTMC)2‐ b‐PDMAEMA, were successfully synthesized by sequence conducting the ROP of TMC and ATRP of DMAEMA. The Y‐shaped copolymers were characterized by 1H NMR and GPC measurements. Subsequently, the self‐assembly behavior of these copolymers was investigated by dynamic light scattering method and transmission electron microscopy, which indicated that these amphiphilic Y‐shaped copolymers can self‐assemble into micelles and possess distinct pH‐dependent size in aqueous milieu. The results indicate that the amphiphilic Y‐shaped copolymers had the pH‐responsive properties similar to the expected PDMAEMA. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

13.
A strategy is introduced for the synthesis of polyethylene‐block‐poly(ε‐caprolactone) block copolymers by a combination of coordination polymerization and ring‐opening polymerization. First, end‐hydroxylated polyethylene (PE‐OH) was prepared with a one‐step process through ethylene/3‐buten‐1‐ol copolymerization catalyzed by a vanadium(III) complex bearing a bidentate [N,O] ligand ([PhN?C(CH3)CHC(Ph)O]VCl2(THF)2). The PE‐OH was then used as macroinitiator for ring‐opening polymerization of ε‐caprolactone, leading to the desired nonpolar/polar diblock copolymers. The block structure was confirmed by spectral analysis using 1H NMR, gel permeation chromatography and differential scanning calorimetry. The unusual topologies of the model copolymers will establish a fundamental understanding for structure–property correlations, e.g. compatibilization, of polymer blends and surface and interface modification of other polymers. © 2014 Society of Chemical Industry  相似文献   

14.
Block copolymers, polystyrene‐b‐poly(styrene‐co‐maleic anhydride), have been prepared by reversible addition‐fragmentation chain transfer (RAFT) polymerization technique using three different approaches: 1‐phenylethyl phenyldithioacetate (PEPDTA) directly as RAFT agent, mediated polystyrene (PS) block as the macromolecular PS‐RAFT agent and mediated poly(styrene‐maleic anhydride) (SMA) block with alternating sequence as the macromolecular SMA‐RAFT agent. Copolymers synthesized in the one‐step method using PEPDTA as RAFT agent possess one PS block and one SMA block with gradient structure. When the macromolecular RAFT agents are employed, copolymers with one PS block and one alternating SMA block can be produced. However, block copolymers with narrow molecular weight distribution (MWD) can only be obtained using the PS‐RAFT agent. The MWD deviates considerably from the typical RAFT polymerization system when the SMA is used as the RAFT agent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Diblock and triblock copolymers of poly‐L ‐lactide (PLLA) and polystyrene (PS) were synthesized and the mechanical properties of these copolymers studied. Free radical polymerization of styrene in the presence of 2‐mercaptoethanol as functional chain transfer agent produced mono‐functionalized PS‐blocks which were used as macroinitiators in the subsequent ring opening polymerization (ROP) of L ‐lactide to produce the diblock copolymers. Furthermore a α‐ω‐bishydroxyl functionalized PS‐block was synthesized by RAFT, which was then engaged as bifunctional initiator for the ROP of L ‐lactide to provide the triblock copolymers PLLA‐PS‐PLLA. Through the copolymerisation and high molar masses, it was possible to achieve an improved mechanical property profile, compared with pure PLLA, or the analogous blends of PLLA and PS. A weight fraction of PS of 10–30% was found to be the optimal range for improving the heat deflection temperature (HDT), as well as mechanical properties such as ultimate tensile strength or elongation at break. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

16.
The present contribution describes an innovation in the copolymerization of cyclic monomers, ε‐caprolactam (ε‐CL) and 2,2‐dimethyltrimethylene carbonate (DTC), with ethyl diazoacetate (EDA). The characterizations of the obtained copolymers, poly(EA‐ran‐EDA‐ran‐ε‐CL) and poly(EA‐ran‐EDA‐ran‐DTC) (where EA refers to the ethyl acetate group from EDA after nitrogen release), were performed using 1H NMR and 13C NMR spectroscopies and size exclusion chromatography. Under optimized conditions, the copolymer of ε‐CL with EDA possessing a number‐average molar mass (Mn) of 1300 g mol?1 and dispersity of 2.12 as well as that of DTC with EDA with Mn of 8000 g mol?1 and dispersity of 1.47 were obtained. The incorporation of the azo group in the obtained copolymers was determined from the results of elemental analysis (3.30–10.22% nitrogen) and Fourier transform infrared spectroscopy. Furthermore, the thermal properties of the obtained copolymers were examined using differential scanning calorimetry. X‐ray diffraction results showed that the synthesized copolymers were amorphous. © 2014 Society of Chemical Industry  相似文献   

17.
Well‐defined poly(dimethylsiloxane‐b‐styrene) diblock copolymers were prepared by reversible addition–fragmentation chain‐transfer (RAFT) polymerization. Monohydroxyl‐terminated polydimethylsiloxane was modified to form a functional polydimethylsiloxane/macro‐RAFT agent, which was reacted with styrene to form the diblock copolymers. The chemical compositions and structures of the copolymers were characterized by proton nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, and gel permeation chromatography. The surface properties and morphology of the copolymers were investigated with static water contact‐angle measurements, X‐ray photoelectron spectroscopy, transmission electron microscopy, and atomic force microscopy, which showed a low surface energy and microphase separation surfaces that were composed of hydrophobic domains from polydimethylsiloxane segments. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
The kinetics of ab initio reversible addition‐fragmentation chain transfer (RAFT) emulsion polymerization of styrene using oligo(acrylic acid‐b‐styrene) trithiocarbonate as both polymerization mediator and surfactant were systematically investigated. The initiator concentration was set much lower than that in the conventional emulsion polymerization to significantly suppress the irreversible termination reaction. It was found that decreased rapidly but the nucleation efficiency of micelles increased with the decrease of the initiator concentrations due to the significant radical exit. The particle number ( ) did not follow the classic Smith–Eward equation but was proportional to [I]?0.4[S]0.7. It was suggested that RAFT emulsion polymerization could be fast enough for commercial use even at extremely low initiator concentrations and low macro‐RAFT agent concentrations due to the higher particle nucleation efficiency at lower initiator concentration. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2126–2134, 2016  相似文献   

19.
Copolymerization of methyl acrylate (MA) with 1‐octene (1‐Oct) was conducted in the presence of free radical initiator, 2,2′‐azobis(2‐methylpropionitrile) (AIBN) using heterogeneous Lewis acid, acidic alumina. The polymers obtained were transparent and highly viscous liquids. The copolymer composition calculated from 1H NMR showed alkene incorporation in the range of 10–61%. The monomodal nature of chromatographic curves corresponding to the molecular weight distribution in gel permeation chromatography (GPC) further confirmed that the polymers obtained are true copolymers. The number–average molecular weights (Mn) of the copolymers were in the range of 1.1 × 104–1.6 × 104 with polydispersity index of 1.75–2.29. The effects of varying the acidic alumina amount, time of polymerization, and monomer infeed on the incorporation of 1‐Oct in the polymer chain were studied. Increased 1‐Oct infeed led to its higher inclusion in the copolymer chain as elucidated by NMR. DEPT‐135 NMR spectral analysis was used to explicate the nature of arrangement of monomer sequences in the copolymer chain. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Poly(methyl methacrylate)‐poly(L ‐lactic acid)‐poly(methyl methacrylate) tri‐block copolymer was prepared using atom transfer radical polymerization (ATRP). The structure and properties of the copolymer were analyzed using infrared spectroscopy, gel permeation chromatography, nuclear magnetic resonance (1H‐NMR, 13C‐NMR), thermogravimetry, and differential scanning calorimetry. The kinetic plot for the ATRP of methyl methacrylate using poly(L ‐lactic acid) (PLLA) as the initiator shows that the reaction time increases linearly with ln[M]0/[M]. The results indicate that it is possible to achieve grafted chains with well‐defined molecular weights, and block copolymers with narrowed molecular weight distributions. The thermal stability of PLLA is improved by copolymerization. A new wash‐extraction method for removing copper from the ATRP has also exhibits satisfactory results. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号