首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
PEGylation of antimicrobial peptides as a shielding tool that increases stability toward proteolytic degradation typically leads to concomitant loss of activity, whereas incorporation of ultrashort PEG-like amino acids (sPEGs) remains essentially unexplored. Here, modification of a peptide/β-peptoid hybrid with sPEGs was examined with respect to influence on hydrophobicity, antibacterial activity and effect on viability of mammalian cells for a set of 18 oligomers. Intriguingly, the degree of sPEG modification did not significantly affect hydrophobicity as measured by retention in reverse-phase HPLC. Antibacterial activity against both wild-type and drug-resistant strains of Escherichia coli and Acinetobacter baumannii (both Gram-negative pathogens) was retained or slightly improved (MICs in the range 2–16 µg/mL equal to 0.7–5.2 µM). All compounds in the series exhibited less than 10% hemolysis at 400 µg/mL. While the number of sPEG moieties appeared not to be clearly correlated with hemolytic activity, a trend toward slightly increased hemolytic activity was observed for analogues displaying the longest sPEGs. In contrast, within a subseries the viability of HepG2 liver cells was least affected by analogues displaying the longer sPEGs (with IC50 values of ~1280 µg/mL) as compared to most other analogues and the parent peptidomimetic (IC50 values in the range 330–800 µg/mL).  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
The cover picture shows a “reverse” indole derivative in complex with Bacillus stearothermophilus peptide deformylase (PDF). This compound was selected from a structure–activity relationship study as a potent inhibitor of bacterial PDFs and shows antibacterial activity toward Bacillus subtilis as well as other pathogens such as Streptococcus pneumoniae and Staphylococcus aureus. For more details, see the Full Paper by I. Artaud et al. on p. 261 ff.

  相似文献   


19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号