首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low affinity between hydrophilic cellulose fibers and hydrophobic matrices leads to poor interfacial bonding, reducing the mechanical performances of natural cellulose fiber-reinforced composites. This study illustrates plasma-induced addition polymerization of propylene to create a hydrophobic surface on ramie fibers for enhancing their bonding with polypropylene (PP). Plasma treatment with propane is applied for comparison. The advancing contact angles of the plasma-treated ramie fibers are raised from 66.3° to 106.1° and the interfacial shear strengths with PP are enhanced up to 36.4%, likely resulted from the increase in fiber surface roughness observed under a scanning electron microscope and the introduction of plasma-grafted PP and alkyl groups on fibers surfaces proven by X-ray photoelectron spectroscopy. It is also revealed that plasma treatment with propylene is highly effective in increasing surface carbon content (from 68.3% to 82.4% in 0.5 min) and more efficient than the treatment with propane, though both plasma treatments show substantial modification efficacies to the fiber surfaces. The treatment duration affects surface roughness more than surface chemical composition, and the optimized treatment time is around 1 min. The modification method developed in this research has the potential to be used for surface modification of fibers for many applications.  相似文献   

2.
Y. Liang  D.D. Pappas 《Polymer》2011,52(2):510-518
Polymer-polymer composites comprised of vinyl ester matrices (VE) and polypropylene (PP) fiber meshes were fabricated and tested in this investigation. Results indicated that PP fibers greatly enhanced fracture toughness; however, strength of the VE was significantly reduced as voids were observed at the interface of the PP and VE. A two-step surface modification, oxygen plasma treatment followed by grafting vinyltrimethoxysilane (VTMS), was conducted on PP fibers in an effort to improve interfacial strength. Interfacial discontinuities of composites were improved after surface modification of PP. The oxygen plasma treatment added hydrophilic functional groups but caused surface roughness. Surface treatment of PP slightly increased fracture toughness of the PP-VE composite by enhancing energy absorption capacity at the interface. However, mechanical strength and modulus did not significantly increase for the composite using VTMS grafted PP fibers due to the weak fiber material. Small PP fibers with higher strength may attain the expected improvement in mechanical properties after surface treatment.  相似文献   

3.
The objective of this study was to evaluate the influence of the wood fiber surface on the crystallization behavior of thermoplastic polymers. Unbleached and bleached kraft pulp fibers were used for this study with 100% polypropylene (PP), 95% PP/5% maleic anhydride polypropylene (MAPP), and 100% MAPP at 150°C. Nuclei were induced at the ends of the fibers and on damaged surfaces while poor crystallization behavior was observed on the fiber surfaces using 100% PP. Enhanced MAPP induced transcrystallization on the wood fiber surfaces; the nucleation density also increased with the addition of MAPP. Oxygen/carbon (O/C) ratios of smooth surfaces, damaged surfaces, and the ends of wood fibers also indicated that the oxidation process of both wood fiber and thermoplastic polymer affected the crystallization process without MAPP addition. It was observed that the MAPP played a role in increasing numbers of nuclei on the linear fiber surface to induce transcrystallization. Dynamic mechanical properties increased 52% with 100% MAPP compared to the use of 100% PP. Therefore, the increased thickness of transcrystalline layer and nucleation density on the surface of wood fiber positively correlated with the dynamic mechanical properties of wood fiber‐plastic composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
In this work, effects of the interface modification on the carbon fiber‐reinforced epoxy composites were studied. For this purpose, the surface of carbon fibers were modified by oxygen plasma treatment. The surface characteristics of carbon fibers were studied by X‐ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), dynamic contact angle analysis (DCAA), and dynamic mechanical thermal analysis (DMTA), respectively. The interlaminar shear strength (ILSS) was also measured. XPS and AFM analyses indicated that the oxygen plasma treatment successfully increased some oxygen‐containing functional groups concentration on the carbon fiber surfaces, the surface roughness of carbon fibers was enhanced by plasma etching and oxidative reactions. DCAA and DMTA analyses show that the surface energy of carbon fibers increased 44.9% after plasma treatment for 3 min and the interfacial bonding intensities A and α also reached minimum and maximum value respectively. The composites exhibited the highest value of ILSS after oxgen plasma treated for 3 min. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
In this study, wool fibers are modified by low frequency plasma polymerization of acrylic acid regarding to its' hydrophobic character due to cuticular cells at their surfaces. Variables of the plasma glow discharge processes were power (40–100 W) and exposure time (5–45 min). The effect of plasma modification in the performance properties of wool were investigated on the basis of hydrophilicity of wool, average wrinkle recovery angle, and breaking strength. The surface chemical structures of fabrics were examined with x‐ray photoelectron spectroscopy. The hydrophobic wool fabric became hydrophilic after all plasma treatments except one (40W–5 min). Average wrinkle recovery angle of the treated fabrics were between 157 and 178°, while that of untreated fabric was 180°. The treated fabrics had a little bit lower angles according to the untreated fabric. However, even the lowest value as 157° means that the fabric has a good crease resistance property. The breaking strengths of fabrics were increased up to 26% after the plasma treatments. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
A novel and general method of modifying hydrophobic polysulfone (PSF) to produce highly hydrophilic surfaces was developed. This method is the low‐temperature plasma technique. Graft polymer‐modified surfaces were characterized with the help of Fourier transform infrared attenuated total reflection (FTIR–ATR) and X‐ray photoelectron spectroscopy (XPS). Study results demonstrated that poly(ethylene glycol) (PEG) could be grafted onto the PSF membrane surface by low‐temperature plasma. The hydrophilic character of the modified surfaces was increased in comparison with that of the parent membrane. The contact angle for a modified PSF membrane was reduced apparently. We analyzed the effectiveness of this approach as a function of plasma operating variables including plasma treatment power and treatment time. Hence, plasma‐induced graft polymer modification of membranes can be used to adjust membrane performance by simultaneously controlling the surface hydrophilicity and hemocompatibility. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 979–985, 2000  相似文献   

7.
In this work the effect of atmospheric plasma treatment on carbon fiber has been studied. The carbon fibers were treated for 1, 3 and 5 min with a He/O2 dielectric barrier discharge atmospheric pressure plasma. The fiber surface morphology, surface chemical composition and interfacial shear strength between the carbon fiber and epoxy resin were investigated using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and the single fiber composite fragmentation test. Compared to untreated carbon fibers, the plasma treated fiber surfaces exhibited surface morphological and surface composition changes. The fiber surfaces were found to be roughened, the oxygen content on the fiber surfaces increased, and the interfacial shear strength (IFSS) improved after the atmospheric pressure plasma treatment. The fiber strength showed no significant changes after the plasma treatment.  相似文献   

8.
采用低温等离子体改性技术,对国产聚酰亚胺纤维进行表面改性,从而提高了国产聚酰亚胺纤维的润湿性。对改性后的聚酰亚胺纤维进行表面形貌、表面化学结构、纤维力学性能、纤维静态水接触角以及束纤维芯吸效应的测试与分析,得知低温等离子体改性可以对国产聚酰亚胺纤维的表面进行刻蚀,使光滑的纤维表面出现凹槽,同时可以引入大量的亲水性官能团,提升纤维亲水性。当放电功率为130 W、放电时间为240 s、放电压强为25 Pa时,聚酰亚胺纤维的亲水性得到较大的改善,同时强力损失相对较小。  相似文献   

9.
Without any preprocessing, silk fabric has lower ability to hold on water due to the smooth morphology of silk fibers. Therefore, patterns directly printed with pigment inks have poor color yields and easily bleed. Plasma surface‐treatment of silk fabric was carried out in an oxygen atmosphere under different experimental conditions. The samples were printed with magenta pigment ink after treatment. The results showed that the optimum treatment conditions we obtained were exposure time of 10 min at a working pressure of 50 Pa and a working power around 80 W. At such conditions, surface‐modified silk fabrics could obtain the effects of features with enhanced color yields and excellent pattern sharpness. Atomic force microscope images indicated that low‐temperature oxygen plasma initiated modifications to the surface of silk fiber with more grooves. Dynamic contact angle analysis showed that the hydrophilicity of silk fiber was remarkably improved after pretreatment with plasma. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Polysulfone (PS) and poly(ether)sulfone (PES) are often used for synthesis of nanofiltration membranes, due to their chemical, thermal, and mechanical stability. The disadvantage for applying PS/PES is their high hydrophobicity, which increases membrane fouling. To optimize the performance of PS/PES nanofiltration membranes, membranes can be modified. An increase in membrane hydrophilicity is a good method to improve membrane performance. This article reviews chemical (and physicochemical) modification methods applied to increase the hydrophilicity of PS/PES nanofiltration membranes. Modification of poly(ether)sulfone membranes in view of increasing hydrophilicity can be carried out in several ways. Physical or chemical membrane modification processes after formation of the membrane create more hydrophilic surfaces. Such modification processes are (1) graft polymerization that chemically attaches hydrophilic monomers to the membrane surface; (2) plasma treatment, that introduces different functional groups to the membrane surface; and (3) physical preadsorption of hydrophilic components to the membrane surface. Surfactant modification, self‐assembly of hydrophilic nanoparticles and membrane nitrification are also such membrane modification processes. Another approach is based on modification of polymers before membrane formation. This bulk modification implies the modification of membrane materials before membrane synthesis of the incorporation of hydrophilic additives in the membrane matrix during membrane synthesis. Sulfonation, carboxylation, and nitration are such techniques. To conclude, polymer blending also results in membranes with improved surface characteristics. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
In order to investigate hydrophilic recovery of hydrophobic treatment of cellulose fibers, ramie fibers are ethanol-pretreated followed by atmospheric pressure plasma jet (APPJ) treatment using helium as the treatment gas and age for up to 150?days in 20?°C and 65% relative humidity. Scanning electron microscopy shows the fiber surfaces of the ethanol-pretreated?+?APPJ-treated group of freshly prepared, aged for 30?days, and aged for 150?days are covered with polypropylene matrix after fiber pullout tests. X-ray photoelectron spectroscopy shows that the freshly prepared ethanol-pretreated?+?APPJ-treated group has a 31% reduction in atomic ratio of oxygen to carbon and maintains at a similar level even after 150?days of aging. Water contact angle measurement demonstrates that the wettability of fiber surface of the freshly prepared ethanol-pretreated?+?APPJ-treated group drastically decreases and remains at the same lever after aging. Interfacial shear strength test reveals that the interfacial adhesion between PP matrix and ramie fiber for the freshly prepared ethanol-pretreated?+?APPJ-treated group increases 26% and remains substantially higher than that of the control group over time. These results indicate that the ethanol pretreatment followed by APPJ treatment is a permanent surface treatment with negligible aging for at least five months.  相似文献   

12.
赋予疏水性聚酯短切纤维亲水性能,可拓展其应用价值。本文提出在碱性Tris缓冲液中,使没食子酸与乙二胺通过迈克尔加成或席夫碱反应共沉积在聚酯短切纤维表面。测定了改性前后聚酯短切纤维的动态接触角,采用扫描电子显微镜(SEM)观察了纤维的微观形貌,利用傅里叶变换红外光谱(FT-IR)和X射线光电子能谱(XPS)表征了纤维表面结构的变化,最后以改性前后聚酯短切纤维和阔叶木浆抄纸,测定了纸张的孔径分布变化和透气性,并测试了纸张物理性能。结果表明:经共沉积改性后的聚酯短切纤维表面存在大量羟基,纤维表面有氮元素生成,同时表面粗糙度提高,与未改性聚酯短切纤维相比,改性后聚酯短切纤维与去离子水的接触角降低了57.2?,显著改善了纤维亲水性;与未改性纤维纸页相比,改性后纤维纸页抗张强度提高35.2%,湿强度提高43.3%,透气度提高11.1%,相同孔径范围内孔径增加了24%-30%,纤维分散性明显提高。本研究成果可制得亲水性优良的聚酯纤维,并可用于高性能纸张的应用。  相似文献   

13.
Nonylphenol ethoxylated (NPE) additives were melt blended in polypropylene (PP) films and characteristics of the modified films were investigated. It was found that melt blending of NPE additives improved hydrophilicity of PP films through additive surface segregation. Surface specific techniques, such as X‐ray photoelectron spectroscopy (XPS) and Time‐of‐Flight Secondary Ion Mass Spectrometry (ToF‐SIMS) were used to study surface compositions of samples modified with NPE additives at different aging time after extrusion. We found that surface enrichment of additives lead to hydrophilic surfaces. Hydrophilic chain length in NPE affected surface composition and hydrophilicity of NPE containing PP polymer. The effect of water immersion and aging were also reported. POLYM. ENG. SCI., 52:1920–1927, 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
On the basis of the short‐chained modifier of stearyl‐alcohol poly(ethylene oxide) ether (AEO), an entrapping modification was carried out on the polypropylene (PP) surface for hydrophilic improvement. A swelling layer was confirmed locating in the amorphous region on the PP surface, from which the modifiers could penetrate into the surface. The AEO‐8 modifier achieved the optimal hydrophilic modification on the surface with a contact angle of 20.6° and modifier coverage of 19.2%. A microphase separation was speculated to occur between the poly(ethylene oxide) (PEO) chain of AEO and the PP substrate in the entrapping surface, after which surface‐enriched PEO chains could improve surface hydrophilicity, simultaneously, reserved stearyl chains in the surface could approach modifier fixation. Water immersion durability of the modified surface could be improved by establishing a covalent linkage in the surface‐fixed structure. This work gives more comprehensive insights in the entrapping modification on the semi‐crystalline PP surface based on the short‐chained and block modifier. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43607.  相似文献   

15.
Low‐temperature helium plasma treatment followed by grafting of N‐vinyl‐2‐pyrrolidone (NVP) onto poly(ether sulfone) (PES) ultrafiltration (UF) membranes was used to modify commercial PES membranes. Helium plasma treatment alone and post‐NVP grafting substantially increased the surface hydrophilicity compared with the unmodified virgin PES membranes. The degree of modification was adjusted by plasma treatment time and polymerization conditions (temperature, NVP concentration, and graft density). The NVP‐grafted PES surfaces were characterized by Fourier transform infrared attenuated total reflection spectroscopy and electron spectroscopy for chemical analysis. Plasma treatment roughened the membrane as measured by atomic‐force microscopy. Also, using a filtration protocol to simulate protein fouling and cleaning potential, the surface modified membranes were notably less susceptible to BSA fouling than the virgin PES membrane or a commercial low‐protein binding PES membrane. In addition, the modified membranes were easier to clean and required little caustic to recover permeation flux. The absolute and relative permeation flux values were quite similar for the plasma‐treated and NVP‐grafted membranes and notably higher than the virgin membrane. The main difference being the expected long‐term instability of the plasma treated as compared with the NVP‐grafted membranes. These results provide a foundation for using low‐temperature plasma‐induced grafting on PES with a variety of other molecules, including other hydrophilic monomers besides NVP, charged or hydrophobic molecules, binding domains, and biologically active molecules such as enzymes and ribozymes. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1699–1711, 1999  相似文献   

16.
Sterilized hollow‐fiber membranes are used in hemodialysis, ultrafiltration, bioprocessing, and tissue engineering applications that require a stable and biocompatible surface. In this study, we demonstrated significant changes in the fiber physicochemical properties with different methods of sterilization. Commercial polysulfone (PS) hollow fibers containing poly(vinyl pyrrolidone) were subjected to standard ethylene oxide (ETO), sodium hypochlorite (bleach), and electron‐beam (e‐beam) sterilization techniques followed by analysis of the surface hydrophilicity, morphology, and water‐retention ability. E‐beam sterilization rendered more hydrophilic fibers with water contact angles near 47° compared to the ETO‐ and bleach‐treated fibers, which were each near 56°. Atomic force microscopy revealed lumen root mean square (rms) roughness values near 19 nm for all three sterilization methods; however, e‐beam‐sterilized and bleach‐treated fibers had significantly higher (~ 106 nm) rms values for the outer wall compared to the ETO‐sterilized fibers (~ 39 nm). The increased hydrophilicity and surface area of the e‐beam‐sterilized fiber were reflected by a greater water evaporation rate than that of the ETO‐treated fiber. These results demonstrate that common sterilization methods may significantly and distinctly alter the polymer membrane physicochemical properties, which may, in turn, impact the performance and, in particular, surface fouling. For tissue engineering and bioprocessing applications, these changes may be leveraged to promote cell adhesion and spreading. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Active macromolecular free radicals were generated on polypropylene (PP) fiber surfaces by argon plasma irradiation, and surface‐modified PP fibers (PP‐g‐St fibers) were prepared by in situ grafting reaction of styrene monomers (St). The prepared samples were characterized by Fourier transform infrared, NMR, X‐ray photoelectron spectroscopy, scanning electron microscopy, and thermogravimetric analysis. Effects of reaction parameters on grafting percentage were studied, and adsorption capacities of PP‐g‐St fibers for benzene, toluene, and xylene (BTX) were evaluated. Regeneration adsorption efficiencies after adsorption of pure BTX and BTX emulsion and solution in water were explored. The results indicated that, using pure St as the monomer, the optimum input power, irradiation time, and grafting reaction time are 90 W, 3 min, and 3 h, respectively, and the grafting percentage of St reached 5.7% when pure St was used. The characterization results demonstrated that St was grafted onto the surface of the PP fibers. Compared to pristine PP fibers, the adsorption capacities of PP‐g‐St fibers toward toluene and xylene emulsions and solutions in water increased. In addition, regeneration adsorption efficiencies of modified fibers remained >90% after six cycles of regeneration adsorption experiments, which showed excellent regeneration ability. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46171.  相似文献   

18.
Polystyrene cell‐culture substrates were treated with argon glow discharge to make their surfaces hydrophilic. The process was novel in that it used a microwave electron cyclotron resonance (ECR) source for polymer surface modification. The substrates were processed at different microwave powers and time periods, and the surface modification was assessed with by measurement of the water contact angle. A decrease in contact angle was observed with increasing microwave power and processing time. Beyond a certain limit of power and duration of exposure, however, surface deterioration occurred. The optimum conditions for making the surfaces hydrophilic without deterioration of the samples were identified. The plasma parameters were assessed by Langmuir probe measurement. Fourier transform infrared spectroscopy with attenuated total reflectance showed evidence for the induction of hydrophilicity on the surface. The surface micromorphology was examined with scanning electron microscopy. The results prove that the ECR glow discharge was an efficient method for enhancing the wettability of the polymer surfaces. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1618–1623, 2003  相似文献   

19.
This study arises on the opportunities of using flax fibers as reinforcement for polypropylene (PP) matrix composites. For this purpose, untreated flax fiber bundles obtained by a retting process have been used. For improving compatibility between flax fiber bundles and PP matrix, fiber surface treatments such as maleic anhydride, maleic anhydride polypropylene copolymer, and vinyltrimethoxy silane have been carried out. On the other hand, alkali treatment has also been carried out for fiber modification. The effect of surface modification on tensile properties of single fibers and also on fiber‐matrix interfacial shear strength (IFSS) has been analyzed. Finally, both optical microscopy and atomic force microscopy have been used for characterizing flax fiber microstructural features. The current study completes previous results to elucidate the influence of treatments on fiber surface and flax fiber‐PP interface. POLYM. COMPOS. 26:324–332, 2005. © 2005 Society of Plastics Engineers.  相似文献   

20.
将涤纶无纺布浸泡于亲水性单体及添加剂溶液中,利用紫外辐照法引发单体聚合反应,将亲水性聚合物固定在无纺布表面对其进行亲水改性。通过测定改性率和改性度来评价亲水性聚合物在无纺布表面的负载程度;通过测定未改性及改性无纺布的膜通量,考察了改性无纺布表面的透水性;通过ATR-FTIR红外吸收谱图,对改性前后的无纺布表面官能团进行表征。实验结果表明:辐照距离为15cm时,改性率和膜通量同时达到较好的效果,此条件下无纺布复合膜的改性率可达到87.8%,膜通量为1567L/m2·h。ATR-FTIR红外光谱分析表明通过2-丙烯酰胺-2-甲基丙磺酸(AMPS)和N,N-亚甲基双丙烯酰胺(MBAM)的交联在无纺布表面负载了亲水性-OH、-CONH2和-SO3H。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号