首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arkansas‐grown non‐genetically modified soybean cultivar, R08‐4004, was selected to prepare a protein isolate, which was treated with Alcalase for limited enzymatic hydrolysis. The objective was to optimize the Alcalase hydrolysis condition to produce soy protein hydrolysate (SPH) with high protein yield, low bitterness, and clarity for beverage applications. The degree of hydrolysis ranged between 14 and 52 % during the study at varying incubation times using two different concentrations of Alcalase enzyme. Recovery of soluble protein, between 21 and 53 %, was achieved with a decrease in turbidity. There was an increase in surface hydrophobicity (S0) which is correlated with bitterness of SPH treated with 1.0 AU (3.2 µL/g) of Alcalase 2.4 L. The sodium dodecyl sulfate‐polyacrylamide gel electrophoresis analysis showed a distinct hydrolysis pattern in which 7S globulin and the two acidic sub‐units of 11S globulin were hydrolyzed extensively in comparison to the two basic sub‐units of 11S globulin. Limited enzymatic hydrolysis produced low molecular weight peptides <17 kDa. Among these SPHs, the one derived after 120 min incubation had the highest soluble protein yield (43 %), low S0 value (35.4), low turbidity (0.88), and highest angiotensin‐I converting enzyme (ACE‐I) inhibition activity (66.6 %). This hydrolysate has potential use as protein rich nutraceutical for developing many non‐genetically modified food product applications.  相似文献   

2.
Pseudozyma antarctica lipase B (CALB) shows activity in the acrylation of hydroxypropylcarbamate, a racemic mixture of enantiomers of primary and secondary alcohols. However, full conversion is hampered by the slowly reacting S enantiomer of the secondary alcohol. The same is true for a wide range of secondary alcohols, for example, octan‐2‐ and ‐3‐ol. In order to get high conversion in these reactions in a short time, the stereospecificity pocket of CALB was redesigned by using predictions from molecular modeling. Positions 278, 104, and 47 were targeted, and a library for two‐site saturation mutagenesis at positions 104 and 278 was constructed. The library was then screened for hydrolysis of acrylated hydroxypropylcarbamates. The best mutants L278A, L278V, L278A/W104F, and L278A/W104F/S47A showed an increased conversion in hydrolysis and transesterification of more than 30 %. While the wild‐type showed only 73 % conversion in the acrylation of hydroxypropylcarbamate after 6 h, 97 % conversion was achieved by L278A in this time. Besides this, L278A/W104F reached >96 % conversion in the acrylation of octan‐2‐ and ‐3‐ol within 48 h and showed a significant decrease in stereoselectivity, while the wild‐type reached only 68 and 59 % conversion, respectively. Thus the new biocatalysts can be used for efficient transformation of racemic alcohols and esters with high activity when the high stereoselectivity of the wild‐type hampers complete conversion of racemic substrates in a short time.  相似文献   

3.
Thiamine diphosphate‐dependent enzymes catalyze the formation of C?C bonds, thereby generating chiral secondary or tertiary alcohols. By the use of vibrational circular dichroism (VCD) spectroscopy we studied the stereoselectivity of carboligations catalyzed by YerE, a carbohydrate‐modifying enzyme from Yersinia pseudotuberculosis. Conversion of the non‐physiological substrate (R)‐3‐methylcyclohexanone led to an R,R‐configured tertiary alcohol (diastereomeric ratio (dr) >99:1), whereas the corresponding reaction with the S enantiomer gave the S,S‐configured product (dr>99:1). This suggests that YerE‐catalyzed carboligations can undergo either an R‐ or an S‐specific pathway. We show that, in this case, the high stereoselectivity of the YerE‐catalyzed reaction depends on the substrate's preference to acquire a low‐energy conformation.  相似文献   

4.
The activity of the aminopeptidase P from Escherichia coli in hydrolyzing a series of organophosphonate sarin analogues (1-6) was evaluated. The enzymatic rates of hydrolysis for methylphosphonate 1 with a methoxy group attached to the phosphorus center were 7- to 15-fold higher than those for the corresponding analogues 2-6. Double mutant R153W/R370L was able to hydrolyze the S(p) enantiomer of racemic 1 at a considerable rate. This mutant allowed the preparation of the R(p) isomer of the sarin analogue 1. All the mutants, R370L, R153A, W88L, R153L/R370L, and R153W/R370L, preferred the formation of (S(p))-8 to that of the corresponding (R(p))-8 enantiomer and displayed a better enantiomeric excess of products, by 1.4- to 2-fold as compared to the wild-type enzyme. Enzymatic hydrolysis of O,O-diisopropyl-p-nitrophenyl phosphate (9) in H(2) (18)O led to the formation of the (18)O-labeled O,O-diisopropyl phosphate product and confirmed that the catalytic reaction starts with cleavage of the P--O bond. From chemical and kinetic studies, the utilization of an optically pure S(p) enantiomer of O-methyl-p-nitrophenyl methylphosphonothioate (S(p))-MNMPT, 7) has demonstrated that the enzymatic reaction proceeds through a displacement mechanism and generates a chiral product in situ with an inversion of stereochemical configuration at the phosphorus atom. The results also lead to the conclusion that alteration of the active site through site-directed mutagenesis can result in a preference for (S(p))-MNMPT (7) rather than the R(p) isomer.  相似文献   

5.
The size of the stereoselectivity pocket of Candida antarctica lipase B limits the range of alcohols that can be resolved with this enzyme. These steric constrains have been changed by increasing the size of the pocket by the mutation W104A. The mutated enzyme has good activity and enantioselectivity toward bulky secondary alcohols, such as 1‐phenylalkanols, with alkyl chains up to eight carbon atoms. The S enantiomer was preferred in contrast to the wild‐type enzyme, which has R selectivity. The magnitude of the enantioselectivity changes in an interesting way with the chain length of the alkyl moiety. It is governed by interplay between entropic and enthalpic contributions and substrates with long alkyl chains are resolved best with E values higher than 100. The enantioselectivity increases with temperature for the small substrates, but decreases for the long ones.  相似文献   

6.
The hydrolytic dehalogenation of rac‐1,3‐dibromobutane catalyzed by the haloalkane dehalogenase LinB from Sphingobium japonicum UT26 proceeds in a sequential fashion: initial formation of intermediate haloalcohols followed by a second hydrolytic step to produce the final diol. Detailed investigation of the course of the reaction revealed favored nucleophilic displacement of the sec‐halogen in the first hydrolytic event with pronounced R enantioselectivity. The second hydrolysis step proceeded with a regioselectivity switch at the primary position, with preference for the S enantiomer. Because of complex competition between all eight possible reactions, intermediate haloalcohols formed with moderate to good ee ((S)‐4‐bromobutan‐2‐ol: up to 87 %). Similarly, (S)‐butane‐1,3‐diol was formed at a maximum ee of 35 % before full hydrolysis furnished the racemic diol product.  相似文献   

7.
Lipase‐catalyzed enantioselective esterification between (R,S)‐ketoprofen and alkanediol in organic solvents was developed to produce (S)‐ketoprofen hydroxyalkyl esters. The acyl acceptor of 1,6‐hexanediol for the resolution of (R,S)‐ketoprofen yielded only the enantioselectivity (the enantiomeric ratio of initial rate for (S)‐ketoprofen to that of (R)‐ketoprofen) VS/VR = 8, when crude Lipase MY originating from Candida rugosa was used. However, isopropanol‐dried immobilized lipases (IPA‐dried IM‐lipase) effectively enhanced the enantioselectivity to greater than 20 in the esterification of (R,S)‐ketoprofen when 1,4‐butanediol, 1,5‐pentanediol or 1,6‐hexanediol was employed. IPA‐dried IM‐lipase and isooctane were selected to use for optimally immobilized lipase and reaction medium, respectively. The IPA‐dried IM‐lipase exhibited the highest enantioselectivity, E = 26.7, to the (S)‐enantiomer with 1,5‐pentanediol and the best enzyme activity to the (S)‐enantiomer with 1,4‐butanediol. The finding indicates that the carbon chain length of the alkanediol strongly affected the enzyme activity and enantioselectivity of lipase‐catalyzed esterification. A maximum enantioselectivity of 37 at 27 °C was generated by IPA‐dried IM‐lipase for the enantioselective esterification of racemic ketoprofen with 1,4‐butanediol. IPA‐dried IM‐lipase can effectively increase the enantioselectivity of lipase. Copyright © 2005 Society of Chemical Industry  相似文献   

8.
BACKGROUND: The enantiomers of N‐hydroxymethyl vince lactam are important intermediates during the synthesis of chiral drugs. The preparation of its single enantiomer can be performed through enzymatic resolution. The aim of this work is to obtain (1S, 4R)‐N‐hydroxymethyl vince lactam with high enantiomeric purity via lipase‐catalyzed enantioselective transesterification in organic solvents. To achieve this, effects of various reaction conditions (including lipase sources, acyl donor, substrate molar ratio, organic solvent, temperature, and water activity) on the enzyme activity as well as enantioselectivity were investigated. RESULTS: The results of the study showed that the enantiopreference for all the selected enzymes was (4S, 1R)‐N‐hydroxymethyl vince lactam in enantioselective transesterification of racemic N‐hydroxymethyl vince lactam. Under the selected optimum conditions, the highest enantioselectivity (E = 33.8) was obtained with a higher enzyme activity (20.3 µmol g?1 min?1) for Mucor miehei lipase (MML) when vinyl valerate was used as the acyl donor. Besides, the remained (1S, 4R)‐N‐hydroxymethyl vince lactam with high enantiomeric purity (ee > 99%) was obtained when the conversion was about 60%. CONCLUSION: The results obtained clearly demonstrated potential for industrial application of lipase in resolution of N‐hydroxymethyl vince lactam through enantioselective transesterification. © 2012 Society of Chemical Industry  相似文献   

9.
Micro techniques were used to obtain spectroscopic and degradative information from less than 5g of the sex attractant of female white peach scale,Pseudaulascaspis pentagons (Targioni-Tozzetti) isolated from airborne collections. The pheromone was identified as (Z)-3,9-dimethyl-6-isopropenyl-3,9-decadien-1-ol propionate. Both enantiomers of theZ isomer and also the enantiomers of theE isomer were prepared from (R)-or (S)-limonene. Bioassays of material with minimum enantiomeric purity of 95% showed that at extreme dilution only theR,Z isomer attracted male white peach scale; however activity of theS,Z enantiomer could not be completely excluded.Mention of a commercial or proprietary product in this paper does not constitute an endorsement of that product by the USDA.  相似文献   

10.
A lipase‐catalyzed enantioselective hydrolysis process under in situ racemization of the remaining (R)‐thioetser substrate with trioctylamine as the catalyst was developed for the production of (S)‐fenoprofen from (R,S)‐fenoprofen 2,2,2‐trifluoroethyl thioester in isooctane. Detailed investigations of trioctylamine concentration on the enzyme activation and the kinetic behavior of the thioester in racemization and enzymatic reactions were conducted, in which good agreement between the experimental data and theoretical results was observed. © 2002 Society of Chemical Industry  相似文献   

11.
The kinetic resolution of amino acid esters (AAEs) is a useful synthetic strategy for the preparation of single‐enantiomer amino acids. The development of an enzymatic dynamic kinetic resolution (DKR) process for AAEs, which would give a theoretical yield of 100 % of the enantiopure product, would require an amino acid ester racemase (AAER); however, no such enzyme has been described. We have identified low AAER activity of 15 U mg?1 in a homologue of a PLP‐dependent α‐amino ?‐caprolactam racemase (ACLR) from Ochrobactrum anthropi. We have determined the structure of this enzyme, OaACLR, to a resolution of 1.87 Å and, by using structure‐guided saturation mutagenesis, in combination with a colorimetric screen for AAER activity, we have identified a mutant, L293C, in which the promiscuous AAER activity of this enzyme towards l ‐phenylalanine methyl ester is improved 3.7‐fold.  相似文献   

12.
Engineered enzyme variants of potato epoxide hydrolase (StEH1) display varying degrees of enrichment of (2R)‐3‐phenylpropane‐1,2‐diol from racemic benzyloxirane. Curiously, the observed increase in the enantiomeric excess of the (R)‐diol is not only a consequence of changes in enantioselectivity for the preferred epoxide enantiomer, but also to changes in the regioselectivity of the epoxide ring opening of (S)‐benzyloxirane. In order to probe the structural origin of these differences in substrate selectivity and catalytic regiopreference, we solved the crystal structures for the evolved StEH1 variants. We used these structures as a starting point for molecular docking studies of the epoxide enantiomers into the respective active sites. Interestingly, despite the simplicity of our docking analysis, the apparent preferred binding modes appear to rationalize the experimentally determined regioselectivities. The analysis also identifies an active site residue (F33) as a potentially important interaction partner, a role that could explain the high conservation of this residue during evolution. Overall, our experimental, structural, and computational studies provide snapshots into the evolution of enantioconvergence in StEH1‐catalyzed epoxide hydrolysis.  相似文献   

13.
The aim of this study is to pursue the identification and characterization of different CAL‐A variants displaying higher specificity toward erucic acid than CAL‐A wild type (wt). A careful analysis of the data generated from previously created site‐directed saturation libraries reveals several variants that display a higher preference for the hydrolysis of p‐nitrophenyl (pNP)‐erucate over pNP‐oleate than the wt. The best three candidates (CAL‐A V238D, V238Y, and V286N) are applied in biocatalysis using both Crambe oil and ethyl ester derivatives. When acting on Crambe oil, these CAL‐A variants are as efficient as CAL‐A wt in terms of C22:1 enrichment and product recovery independently of the temperature (enrichment and recovery values between 70–76% and 67–79% at 37 °C, and between 71–73% and 61–75% at 50 °C). In contrast, hydrolysis of Crambe ethyl esters leads to substantially increased accumulations of C22:1 and recovery values (V238Y: 78% enrichment and 92% recovery; V286N: 83% enrichment and 91% recovery) when using CAL‐A V238Y and CAL‐A V286N compared to CAL‐A wt (78% enrichment, 60% recovery) in the free fatty acid fraction. Practical Applications: This study describes the enhancement of lipase CAL‐A selectivity for the isolation and recovery of erucic acid (C22:1) from plant oil or its ethyl ester derivatives. Hence, this approach could represent a more eco‐friendly alternative for its application in processes where the erucic acid is used as building block, such as the production of surfactants or polymers.  相似文献   

14.
BACKGROUND: A display system, which can translate DNA to functional peptides or proteins, is used as a new protein expression system. In this system, peptides or proteins are displayed on the cell surface as a fusion form with some anchoring proteins. Yeast cells displaying lipases on their cell‐surface could be used as whole‐cell biocatalysts. This research focuses on the functional display of Rhizomucor miehei lipase (RML) on the surface of Saccharomyces cerevisiae with higher activity. RESULTS: The lipases (RML) from R.miehei 3.4960 were of active form. The RML‐α‐agglutinin fusion proteins produced were not secreted into the culture media and were mostly immobilized on the yeast cells. Cell surface displayed lipase showed the highest activity at 45 °C and pH 8.0. CONCLUSION: The gene encoding RML from R.miehei 3.4960 can be functionally expressed on the cell surface of S. cerevisiae MT8‐1 using a glycosylphosphatidylinositol (GPI) anchor with higher activity. Copyright © 2007 Society of Chemical Industry  相似文献   

15.
The hydrolysis of sunflower and soybean oil, catalyzed by two enzymes, non‐immobilized Candida rugosa and immobilized Candida antarctica lipase, was performed at atmospheric and high‐pressure. The results showed that at atmospheric pressure between 40 °C and 60 °C initial reaction rates were influenced by the temperature variation, as expected. Due to favorable physico‐chemical properties of dense gases as reaction media, hydrolysis of soybean oil was performed in non‐conventional solvents: in supercritical (SC) CO2 and near‐critical propane. In SC CO2 the activity of non‐immobilized Candida rugosa lipase decreased while the reaction rates of hydrolysis catalyzed by immobilized Candida antarctica lipase were 1.5‐fold higher than at atmospheric pressure. However, the reaction rates for the hydrolyses catalyzed by both lipases, were much higher in propane than at atmospheric pressure.  相似文献   

16.
Despite the structural similarities between cholesterol oxidasefrom Streptomyces and that from Brevibacterium, both enzymesexhibit different characteristics, such as catalytic activity,optimum pH and temperature. In attempts to define the molecularbasis of differences in catalytic activity or stability, substitutionsat six amino acid residues were introduced into cholesteroloxidase using site-directed mutagenesis of its gene. The aminoacid substitutions chosen were based on structural comparisonsof cholesterol oxidases from Streptomyces and Brevibacterium.Seven mutant enzymes were constructed with the following aminoacid substitutions: L117P, L119A, L119F, V145Q, Q286R, P357Nand S379T. All the mutant enzymes exhibited activity with theexception of that with the L117P mutation. The resulting V145Qmutant enzyme has low activities for all substrates examinedand the S379T mutant enzyme showed markedly altered substratespecificity compared with the wild-type enzyme. To evaluatethe role of V145 and S379 residues in the reaction, mutantswith two additional substitutions in V145 and four in S379 wereconstructed. The mutant enzymes created by the replacement ofV145 by Asp and Glu had much lower catalytic efficiency forcholesterol and pregnenolone as substrates than the wild-typeenzyme. From previous studies and this study, the V145 residueseems to be important for the stability and substrate bindingof the cholesterol oxidase. In contrast, the catalytic efficiencies(kcat/Km) of the S379T mutant enzyme for cholesterol and pregnenolonewere 1.8- and 6.0-fold higher, respectively, than those of thewild-type enzyme. The enhanced catalytic efficiency of the S379Tmutant enzyme for pregnenolone was due to a slightly high kcatvalue and a low Km value. These findings will provide severalideas for the design of more powerful enzymes that can be appliedto clinical determination of serum cholesterol levels and assterol probes.  相似文献   

17.
BACKGROUND: Purification and enzymatic properties of a chitosanase from Bacillus subtilis RKY3 have been investigated to produce a chitooligosaccharide. The enzyme reported was extracellular and constitutive, which was purified by two sequential steps including ammonium sulfate precipitation and ion exchange chromatography. RESULTS: Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis of the purified chitosanase revealed one single band corresponding to a molecular weight of around 24 kDa. The highest chitosanase activity was found to be at pH 6.0 and at 60 °C. Although the mercaptide forming agents such as Hg2+ (10 mmol L?1) and p‐hydroxymercuribenzoic acid (1 mmol L?1, 10 mmol L?1) significantly or totally inhibited the enzyme activity, its activity was enhanced by the presence of 10 mmol L?1 Mn2+. The enzyme showed activity for hydrolysis of soluble chitosan and glycol chitosan, but colloidal chitin, carboxymethyl cellulose, crystalline cellulose, and soluble starch were not hydrolyzed. The analysis of chitosan hydrolysis by thin‐layer chromatography and viscosity variation revealed that the purified enzyme should be endosplitting‐type chitosanase. CONCLUSION: The chitosanase produced by Bacillus subtilis RKY3 was a novel chitosanlytic enzyme with relatively low molecular weight, which is a versatile enzyme for chitosan hydrolysis because it could hydrolyze soluble chitosan into a biofunctional oligosaccharide at a high level. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Griseoviridin (GV) is an A‐type streptogramin antibiotic displaying antimicrobial activity and acting synergistically with viridogrisein (VG). Bioinformatic analyses reveal SgvP as the sole cytochrome P450 enzyme in the GV/VG gene cluster. To explore the role of SgvP in the GV/VG pathway, we inactivated the sgvP gene. The resulting ΔsgvP mutant generated two new products: GV‐1 and GV‐2, both lacking the C?S bridge. In trans complementation of the sgvP gene into the ΔsgvP mutant strain partially restores GV production. Feeding [1‐13C]‐labeled cysteine to the wild‐type strain led to enrichment of C‐7 in the GV scaffold, thus verifying that the C?S bond in GV is formed through direct coupling of the free ?SH group provided by the side chain of cysteine. The above results highlight the significance of SgvP in C?S bond formation in griseoviridin biosynthesis.  相似文献   

19.
A novel horizontal reactive distillation apparatus and a new overall process scheme are proposed for continuous multicomponent chiral resolution via reversible enantioselective acylation of a chiral (racemic) substrate by a chiral (racemic) acyl donor. The process enables simultaneous production of up to four enantiomers with enhanced chiral purity. Kinetic studies, miniplant experiments, and process simulation results are described for a model lipase‐catalyzed reaction: (R)‐enantioselective transesterification of (R,S)‐1‐n‐butoxy‐2‐propanol with (R,S)‐1‐methoxy‐2‐acetoxypropane to produce (R)‐1‐n‐butoxy‐2‐acetoxypropane, (R)‐1‐methoxy‐2‐propanol, and the two unreacted (S)‐enantiomers of the (R,S)‐reagents. A horizontal, compartmentalized reactive distillation vessel is specified instead of a conventional reactive distillation column to provide longer liquid‐phase residence time needed for adequate conversion. Low vapor‐traffic pressure drop allows operation under vacuum at reduced temperatures for good enzyme stability and enantioselectivity. The general technology has potential as a means to producing a wide range of chiral synthons used in asymmetric syntheses of chiral pharmaceuticals and other biologically active products. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2603–2620, 2013  相似文献   

20.
We have previously shown that the β‐aminopeptidases BapA from Sphingosinicella xenopeptidilytica and DmpA from Ochrobactrum anthropi can catalyze reactions with non‐natural β3‐peptides and β3‐amino acid amides. Here we report that these exceptional enzymes are also able to utilize synthetic dipeptides with N‐terminal β2‐amino acid residues as substrates under aqueous conditions. The suitability of a β2‐peptide as a substrate for BapA or DmpA was strongly dependent on the size of the Cα substituent of the N‐terminal β2‐amino acid. BapA was shown to convert a diastereomeric mixture of the β2‐peptide H‐β2hPhe‐β2hAla‐OH, but did not act on diastereomerically pure β23‐dipeptides containing an N‐terminal β2‐homoalanine. In contrast, DmpA was only active with the latter dipeptides as substrates. BapA‐catalyzed transformation of the diastereomeric mixture of H‐β2hPhe‐β2hAla‐OH proceeded along two highly S‐enantioselective reaction routes, one leading to substrate hydrolysis and the other to the synthesis of coupling products. The synthetic route predominated even at neutral pH. A rise in pH of three log units shifted the synthesis‐to‐hydrolysis ratio (vS/vH) further towards peptide formation. Because the equilibrium of the reaction lies on the side of hydrolysis, prolonged incubation resulted in the cleavage of all peptides that carried an N‐terminal β‐amino acid of S configuration. After completion of the enzymatic reaction, only the S enantiomer of β2‐homophenylalanine was detected (ee>99 % for H‐(S)‐β2‐hPhe‐OH, E>500); this confirmed the high enantioselectivity of the reaction. Our findings suggest interesting new applications of the enzymes BapA and DmpA for the production of enantiopure β2‐amino acids and the enantioselective coupling of N‐terminal β2‐amino acids to peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号