首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel poly(ether ether ketone) (PEEK)/single-walled carbon nanotube (SWCNT)/glass fiber laminates incorporating polysulfone as a compatibilizing agent were fabricated by melt-blending and hot-press processing. Their morphology, mechanical, thermal and electrical properties were investigated and compared with the behavior of similar non-compatibilized composites. Scanning electron micrographs demonstrated better SWCNT dispersion for samples with polysulfone. Thermogravimetric analysis indicated a remarkable improvement in the thermal stability of PEEK/glass fiber by the incorporation of SWCNTs wrapped in the compatibilizer, ascribed to a significant thermal conductivity enhancement. Differential scanning calorimetry showed a decrease in the crystallization temperature and crystallinity of the polymer with the addition of both wrapped and non-wrapped SWCNTs. The laminates exhibit anisotropic electrical behavior; their conductivity out-of-plane is lower than that in-plane. Dynamic mechanical studies revealed an increase in the storage modulus and glass transition temperature in the presence of polysulfone. Mechanical tests demonstrated significant enhancements in stiffness, strength and toughness by the incorporation of wrapped nanofillers, whilst the mechanical properties of non-compatibilized composites only improved marginally. Samples with laser-grown SWCNTs exhibit enhanced overall performance. This investigation confirms that SWCNT-reinforced PEEK/glass fiber compatibilized composites possess excellent potential to be used as multifunctional engineering materials in industrial applications.  相似文献   

2.
Bisphthalonitrile (BAPh)/polyarylene ether nitrile end‐capped with hydroxyl groups (PEN‐OH) composite laminates reinforced with glass fiber (GF) have been fabricated in this article. The curing behaviors of BAPh/PEN‐OH prepolymers have been characterized by differential scanning calorimetry and dynamic rheological analysis. The results indicate that with the introduction of PEN‐OH the curing temperature of BAPh has decreased to 229.6–234.8°C and BAPh/PEN‐OH prepolymers exhibit large processing windows with relatively low melt viscosity. The BAPh/PEN‐OH/GF composite laminates exhibit tensile strength (272.4–456.5 MPa) and modulus (4.9–10.0 GPa), flexural strength (507.1–560.9 MPa), and flexural modulus (24.0–30.4 GPa) with high thermal (stable up to 538.3°C) and thermal stabilities (stable up to 475.5°C). The dielectric properties of BAPh/PEN‐OH/GF composite laminates have also been investigated, which had little dependence on the frequency. Meanwhile, scanning electron microscopy results show that the BAPh/PEN‐OH/GF composite laminates display excellent interfacial adhesions between the matrix and GFs. Herein, the BAPh/PEN‐OH matrix can be a good matrix for high‐performance polymeric materials and the advanced BAPh/PEN‐OH/GF composite laminates can be used under high temperature environment. POLYM. COMPOS., 34:2160–2168, 2013. © 2013 Society of Plastics Engineers  相似文献   

3.
A high‐temperature lubricant genioplast pellets (GPPS) was used in order to improve the processing behavior of poly(ether ether ketone) (PEEK) resin and high‐performance PEEK fibers were produced by melt‐spinning. The rheological properties of spinning material, morphology, mechanical, and thermal properties of PEEK fibers were characterized by using a polymer capillary rheometer, scanning electron microscopy, single fiber electronic tensile strength tester, wide‐angle X‐ray diffraction and thermal gravimetric analyzer, respectively. The results indicated that the introduction of lubricant GPPS decreased the melting viscosity of PEEK resin and improved spinnability of PEEK resin without sacrificing its thermal properties. The filaments are cylindrical with smooth surface and uniform diameter. The optimized content of GPPS was determined to be 1.0 wt% by balancing the decreased torque and changes of the mechanical properties. The strength and modulus of PEEK fibers were 420 MPa and 3.6 GPa, respectively. This should be due to the improvement in spinnability, followed by the enhancements in the orientation and crystallization of PEEK fibers in the process of drawing and annealing. POLYM. ENG. SCI., 53:2254–2260, 2013. © 2013 Society of Plastics Engineers  相似文献   

4.
The carbon fiber/(carbon nanotubes/polyetherimide)/poly ether ether ketone (CF/(CNTs/PEI)/PEEK) laminates are prepared by inserting carbon nanotubes/polyetherimide (CNTs/PEI) interleaves into interlaminar region. The mechanical properties and electrical conductivities of the developed laminates are evaluated. The results indicate that the interlaminar shear strength and flexural strength of CF/(CNTs/PEI)/PEEK laminates are increased by 42.9% and 24.7%, after inserting CNTs2.91/PEI interleaves, respectively. The cross-sectional images of laminates after mechanical tests verify strong fiber-resin adhesion by scanning electron microscope observation. The pertinent mechanism responsible for the improvement of mechanical properties is mechanical interlocking effect of CNTs. After incorporating CNTs/PEI interleaves, the electrical conductivity of laminates is markedly improved due to the formation of conductive pathway. This work suggests that this method is compatible with the preparation process of thermoplastic composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48658.  相似文献   

5.
A series of blends with various compositions are prepared by melt extrusion on the basis of novel copoly(phthalazinone biphenyl ether sulfone) (PPBES) and poly(ether ether ketone) (PEEK). The melt flowability, mechanical and thermal properties of the blends are studied. The results show that the incorporated PEEK has a large influence on the melt viscosity and thermal stability of blends. The tensile strength of the blends remains at about 90 MPa at room temperature; PPBES improves the mechanical properties of PEEK at 150°C. The flexural strength and modulus of the PPBES/PEEK blends also increase with the addition of PEEK.  相似文献   

6.
The miscibility behavior of poly(ether ether ketone) (PEEK) and polyethersulfone was studied by differential scanning calorimetry (glass transition temperature) and tensile properties: Young's modulus and ultimate tensile strength. A single glass transition temperature was observed over the entire composition range. The glass transition temperature of blends, however, did not follow any of the theoretical equations. Utracki and Jukes equation was used with K = 11 to fit the experimental data that indicate partial miscibility. Up to 30 wt % PEEK, the blends showed amorphous behavior with the glass transition temperature very close to that of polyethersulfone. Because of partial miscibility, blends showed mechanical compatibility. Both the modulus and strength increased significantly with an increasing concentration of PEEK in the blends, reaching a maximum around 40%. Electron microscopic results revealed phase separation but strong adhesion between the phases.  相似文献   

7.
Poly(acrylonitrile‐styrene‐butadiene) (ABS) was used to modify diglycidyl ether of bisphenol‐A (DGEBA) type epoxy resin, and the modified epoxy resin was used as the matrix for making multiwaled carbon tubes (MWCNTs) reinforced composites and were cured with diamino diphenyl sulfone (DDS) for better mechanical and thermal properties. The samples were characterized by using infrared spectroscopy, pressure volume temperature analyzer (PVT), thermogravimetric analyzer (TGA), dynamic mechanical analyzer (DMA), thermo mechanical analyzer (TMA), universal testing machine (UTM), and scanning electron microscopy (SEM). Infrared spectroscopy was employed to follow the curing progress in epoxy blend and hybrid composites by determining the decrease of the band intensity due to the epoxide groups. Thermal and dimensional stability was not much affected by the addition of MWCNTs. The hybrid composite induces a significant increase in both impact strength (45%) and fracture toughness (56%) of the epoxy matrix. Field emission scanning electron micrographs (FESEM) of fractured surfaces were examined to understand the toughening mechanism. FESEM micrographs reveal a synergetic effect of both ABS and MWCNTs on the toughness of brittle epoxy matrix. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Poly(ether ether ketone), PEEK, was functionalized by addition of pendant functional groups, that is, acetyl, carboxylic, acyl chloride, amide, and amine groups in the benzene ring of polymer backbone without substituting the parent (ether or ketonic) functional groups of polymer to improve the mechanical and surface adhesivity with acellular inorganic biomaterials. The functional groups of virgin PEEK and functionalized PEEK were identified by Fourier transform infrared spectroscopy and 13C nuclear magnetic resonance. The crystallinity was studied by X‐ray diffraction and further supported by differential scanning calorimetry (DSC) analysis. Similarly, the change in glass transition temperature was confirmed by the DSC and dynamic mechanical analysis (DMA). The improved mechanical property was also evaluated by DMA. The excellent surface adhesivity and bioactivity were revealed by acellular in vitro test using simulated body fluid. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Abstract

Novel poly(ether ether ketone) (PEEK)/organically modified montmorillonite (OMMT) composites containing 0–10 wt-% fractions of OMMT were prepared by melting blending method and the microstructure, thermal and mechanical properties were investigated using different characterisation techniques. X-ray diffraction and transmission electron microscopy showed that the OMMT was well dispersed with microscale in the PEEK matrix. Differential scanning calorimetry indicated that the glass transition temperature T g and melt temperature T m of PEEK/OMMT composites (POMCs) were hardly affected by the addition of OMMT, while the crystal temperature T c decreased when the amount of OMMT excessed 1 wt-%. The data of thermogravimetric analysis exhibited that the thermal stability of POMCs in higher temperature region was better than that of pure PEEK. The results of mechanical properties test revealed that modulus and strength of POMCs increased with the content of OMMT, whereas the elongation at break and impact strength of POMCs decreased.  相似文献   

10.
A series of composite fibers based on poly(ether ether ketone)s (PEEK) and a thermotropic liquid crystalline poly(ether ketone)arylates (PEKAR) have been prepared by melt spinning. The structure, compatibility, and properties of these composite fibers were investigated in detail by rheological measurements, differential scanning calorimetry, thermogravimetric analysis, wide‐angle X‐ray diffraction, scanning electron microscopy, orientation degree test, and mechanical properties test. The results showed that the addition of PEKAR could reduce the apparent melt viscosity of the blends obviously, which is beneficial in improving the processibility of PEEK at a relatively low temperature. After adding 1 wt % PEKAR to PEEK, the tensile strength of the post‐treatment fiber improved by 8.8%, whereas the crystallinity of the as‐spun fiber increased from 21.76% to 31.51%, and the orientation degree also increased with the addition of PEKAR. The result of morphology research suggested that PEKAR had a good compatibility with PEEK resin. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40595.  相似文献   

11.
Mechanical properties such as the tensile modulus, yield (break) strength, and elongation to break (or yield) are measured for multiphase poly(ether ether ketone) (PEEK)/poly(aryl ether sulfone) (PES) blends. Specimens with three different levels of thermal histories (quenched, as‐molded, and annealed) are prepared in order to study their effects on the mechanical properties of PEEK/PES blends. Synergistic behavior is observed in the tensile modulus and tensile strength of the blends in almost the whole range of compositions. The ductility of quenched blends measured as the elongation to break (yield) shows an unexpected synergistic behavior in the blend containing 90 wt % PEEK, although a negative deviation from additive behavior is observed in the rest of the compositions. A ductile–brittle transition is observed between 50 and 75 wt % PEEK in the blend. The ductile–brittle transition in as‐molded blends shifts to 75–90 wt % PEEK. Annealed blends show predominantly brittle behavior in the whole composition range. The experimental data are further correlated with the theoretically predicted results based on various composite models. Although the prediction based on these equations fails to fit the experimental data in the whole composition range, the simplex equations that are normally used for blends showing synergistic behavior produced a reasonable fit to the experimental data. The mechanical properties obtained for different blend compositions are further correlated with their morphology as observed by scanning electron microscopy. Morphological observation shows a two‐phase morphology in PES‐rich blends, which is an interlocked morphology in which the disperse phase is not clearly visible in PEEK‐rich blends, and a cocontinuous type of morphology for a 50/50 composition. Considerable permanent deformation of both the disperse and matrix phase, especially in the case of quenched tensile specimens, demonstrates the remarkable adhesion present between the two phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2887–2905, 2003  相似文献   

12.
In this study, mechanical properties such as tensile properties, flexural properties, and Izod impact strength of poly(ether ether ketone) (PEEK) and poly(ether ketone) (PEK) blends at PEK concentration from 0 to 0.42 volume fraction were studied. The blends of PEEK and PEK of different compositions were prepared by extrusion in a single‐screw extruder. With increase in the PEK concentrations, the tensile strength, flexural strength, and modulus increased whereas the tensile modulus and the impact strength decreased. Homogeneous dispersion and adhesion of PEK in PEEK was shown by the morphological studies. Crystallinity of blends influenced the tensile modulus and the impact strength. Using simple models to relate normalized tensile parameters where the data were divided by the crystallinity of the blends and of the PEEK matrix, respectively, supported the experimental results. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
A modified bismaleimide (BMI) resin system for resin transfer molding was prepared by using o,o′‐diallyl bisphenol A ether and 1,4‐diallyl phenyl ether as reactive diluents for BMI. The processing behavior was studied through time–temperature–viscosity curves, gel characteristics, and differential scanning calorimetry. The results indicate that the injection temperature can be 80°C, at which its apparent viscosity is only 0.30 Pa · s. Moreover, after it had been maintained at 80°C for 15 h, the apparent viscosity was still less than 1.00 Pa · s. The cured resin had remarkable heat resistance, hot/wet resistance, and mechanical properties. The heat stability and mechanical properties of the composite based on this resin system and woven glass cloth are also discussed. For short beam shear strength, in tests at 150 and 180°C, 90 and 65% of the original room temperature strength was retained. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1649–1653, 1999  相似文献   

14.
Graphite fiber reinforced poly(ether ether ketone) (PEEK) and graphite fiber reinforced bismaleimide (BMI) composite materials are two kinds of advanced fiber-reinforced polymer matrix composites with good thermal stability and excellent mechanical properties at high temperature. They are currently receiving considerable attention. the main limitation on their application is the lack of knowledge regarding their behaviors during extended use at high temperature. Thermal aging properties are the main parameters for new polymer matrix composites that will be used in advanced spacecraft structural components. From the results of thermal aging effects on the properties—including interlaminar shear strength, drop-weight impact strength, and impact energy—of graphite/PEEK and graphite/BMI composites, it is found that unidirectional graphite fiber reinforced composites retain higher strength compared to multidirectional, and that multidirectional graphite/PEEK composites keep higher property retentions than multidirectional graphite/BMI composites after thermal aging at 190°C. From scanning electron photomicrographs, it is also found that graphite/PEEK composites have better fiber/resin adhesion, intraply adhesion, and microcrack resistance compared to graphite/BMI composites after thermal aging.  相似文献   

15.
The melting behavior of semicrystalline poly(ether ether ketone ketone) (PEEKK) has been studied by differential scanning calorimetry (DSC). When PEEKK is annealed from the amorphous state, it usually shows two melting peaks. The upper melting peaks arise first, and the lower melting peaks are developed later. The upper melting peaks shown in the DSC thermogram are the combination (addition) of three parts: initial crystal formed before scanning; reorganization; and melting-recrystallization of lower melting peaks in the DSC scanning period. In the study of isothermal crystallization kinetics, the Avrami equation was used to analyze the primary process of the isothermal crystallization; the Avrami constant, n, is about 2 for PEEKK from the melt and 1.5 for PEEKK from the glass state. According to the Lauritzen-Hoffman equation, the kinetic parameter of PEEKK from the melt is 851.5 K; the crystallization kinetic parameter of PEEKK is higher than that of PEEK, and suggests the crystallizability of PEEKK is less than that of PEEK. The study of crystallization on PEEKK under nonisothermal conditions is also reported for cooling rates from 2.5°C/min to 40°C/min, and the nonisothermal condition was studied by Mandelkern analysis. The results show the nonisothermal crystallization is different from the isothermal crystallization. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
This study examines the drawing behavior of amorphous films of poly(ether ether ketone) (PEEK) and the effect of the drawing and the drawing temperature on some physical properties of the drawn samples. The thermal analysis shows that the amorphous films drawn at 200% of deformation and at temperatures of 80, 120, and 140°C crystallize by heating and the crystallization occurs at lower temperature with a lower crystallization enthalpy. The first effect can be related to the influence of orientation on the crystallization rate and the second to strain-induced crystallization. The dynamic—mechanical behavior of the drawn samples is in good agreement with the thermal analysis and confirms the presence of strain-induced crystallization at drawing temperatures well below 180°C. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
Results on solution-blended poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) blends are reported. Dichloroacetic acid was used as the cosolvent for blending. PEEK and PEI are confirmed to be miscible in the melt. The glass transition, Tg, behavior obeys the simple Fox equation or the Gordon-Taylor equation with the adjustable coefficient k = 0.86. This agrees with prior data on melt-blended PEEK/PEI blends. The Tg width of the amorphous PEEK/PEI blends was found to be broader than that of the pure components. The maximum broadening is about 10°C. The specific volume of the amorphous PEEK/PEI blends shows a slight negative deviation from linearity, indicating favorable interaction between PEEK and PEI. The spherulitic growth and resultant blend morphology at 270°C were studied by a cross-polarized optical microscope. The radial growth rate of PEEK spherulites formed from the miscible melt at 270°C decreases from 3.04 μm/min for PEEK/PEI 90/10 blend to 0.77 μm/min for PEEK/PEI 70/30 blend. The decrease in crystalization rate of PEEK from PEEK/PEI blends is attributable to the increase in blend Tg. A linear growth was observed for PEEK spherulites formed from miscible melt at 270°C in the early growth stage. The spherulitic growth deviated from linearity in the late stage of growth. PEEK spherulites formed from the miscible PEEK/PEI melt at 270°C are essentially volume-filling. The branches of the spherulites become more clear for PEEK spherulites formed from the blend than that formed from pure PEEK melt.  相似文献   

18.
《Ceramics International》2020,46(12):19973-19980
Phosphate/polyether ether ketone (PEEK) composites were successfully prepared by molding method and thermal treating at the temperature of 360 °C. The structures and compositions of phosphate/PEEK composites were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry and scanning electron microscopy. The mechanical properties thermal resistance and dielectric properties were strictly evaluated by the mechanical testing, thermogravimetric analysis and dielectric constant analysis. As the results, the interpenetrating network structure (IPNS) of Al2O3-phosphates was completely formed in PEEK matrix. And the phosphate/PEEK composite with 40% Al2O3-phosphate showed a 15.9% increasing for tensile strength and 74.5% increasing for compressive strength at room temperature. Besides, the phosphate/PEEK composite with 80 wt% Al2O3-phosphate dispalyed a dielectric constant of 4.0, a dielectric loss of 0.0601 and a Shore hardness of 91 HD. As the structural materials, these composites would exhibited the potential applications in aviation, aerospace and other fields.  相似文献   

19.
Summary: Blends of poly(acrylonitrile‐butadiene‐styrene) (ABS) and poly(ether ether ketone) (PEEK), in which PEEK has been used as a reinforcing medium for the ABS matrix in ratios up to 20 wt.‐% of the blend, were prepared by melt mixing using a laboratory mixer. All the blend compositions were processed at the ABS processing temperature so that the PEEK was dispersed in the ABS matrix without actually melting. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) studies revealed that the glass transition temperature (Tg) of the ABS phase in the blend did not show any appreciable change with composition. The dynamic storage modulus measured by DMA was found to be higher for the blend as compared to pure ABS due to reinforcement of the matrix by PEEK. The tensile strength and modulus behavior of these blends were found to follow the curves predicted using models proposed for composite systems having perfect adhesion, which shows the presence of some physical interaction between the blend components. The good tensile properties of the blend have been correlated with the observed morphology. The disperse phase in the blend has been found to be present in extremely small (sub‐micron) dimensions, which not only provides more surface area for possible interactions between the blend components but also result in efficient stress transfer between the matrix and the dispersed phase during the tensile tests. The thermal stability of the blends was investigated using thermogravimetric analysis (TGA). TGA further revealed that the constituents degraded at their respective decomposition temperatures.

SEM micrograph of tensile fractured surface of an ABS/PEEK 90/10 blend.  相似文献   


20.
Static test methods were used to evaluate and compare the thermal and mechanical properties of several glass/thermoset laminated composites between 25° and 400°C. The unidirectional matrix composites consisted of phenolic-modified epoxy, epoxy novolac, epoxy, and modified phenolic resins. These materials were selected as potential alternative materials for rotary compressor vanes. Dynamic mechanical analysis (DMA), thermomechanical analysis (TMA), and thermogravimetric analysis (TGA) techniques were selected to evaluate elevated temperature performance. The short-beam shear test was chosen to measure interlaminar shear properties. The results indicated that an elevated-temperature matrix, such as the modified phenolic resin, may not result in optimum composite strengths. Instead, an epoxy resin reinforced with glass fibers provides a better balance between elevated-temperature performance and interlaminar shear strength. The test results of this study, in addition to being adequate for discriminating the materials for initial selection purposes, were obtained quickly and easily. Moreover, the thermal results provide a more realistic understanding of composite elevated-temperature characteristic than do those of the present standard test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号