首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of UV‐curable nanocomposites were prepared with 3‐(trimethoxysilyl) propyl methacrylate (MPS) modified nanosilica under the initiation of 2,2‐dimethoxy‐1,2‐diphenylethan‐1‐one. It was found that MPS‐modified nanosilica together with free MPS could form transparent nanocomposite coats. As the particle size of nanosilica increased, the photopolymerization rate, final double bond conversion, and tack‐free time of nanocomposites increased while the surface roughness, glass‐transition temperature, and UV absorbance of nanocomposites decreased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2274–2281, 2005  相似文献   

2.
The inorganic–organic crosslinking polythiourethane/ZnS (PTU/ZnS) nanocomposites with high refractive index and transmittance were successfully prepared. The thiol‐capped ZnS nanoparticles with a diameter of about 5 nm were fabricated into the molecular chains of PTU via the formed covalent bonds between the capped ZnS and the matrix. The investigations demonstrated the ZnS nanoparticles were uniformly dispersed in the PTU matrix even at high contents. The optical studies showed the refractive index of the highly transparent nanocomposite films linearly increased from 1.643 to 1.792 with the increase of the ZnS content. The structure, morphology, and other properties were also characterized by FTIR, NMR, AFM, XRD, DSC, TGA, etc. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
UV‐cured nanocomposite films were prepared from acrylic monomer and two types of nanomaterial: zirconium vinylphosphonate and zirconia, in the presence of a photoinitiator. The films were characterized by FTIR, SEM, and AFM. FTIR spectra showed the disappearance of band assigned to the CC group both of monomer and zirconium vinylphosphonate by polymerization and the presence of the phosphonate group in polymer. The influence of zirconium vinylphosphonate and zirconia content on thermooxidative degradation of polymeric films was studied by thermogravimetry. SEM and AFM images showed that nanomaterials are dispersed in polymer matrix with no macroscopic phase separation. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
As the ubiquity and complexity of optical devices grows, our technology becomes more dependent on specialized functional materials. One area of continued interest is in high refractive index polymers as lightweight, processable and inexpensive alternatives to silicon and glass. In addition to a high refractive index, optical applications require these polymers to be transparent and have a low optical dispersion. Both nanocomposite and intrinsic high refractive index polymers offer particular advantages and disadvantages. While nanocomposite high refractive index polymers have refractive indices above 1.80, the nanoparticle type, content and size can negatively affect storage stability and processability. Alternatively, intrinsic high refractive index polymers are prepared by introducing an atom or substituent with a high molar refraction into a polymer chain; the resultant polymers are easier to store, transport, tune and process. Polymers containing aromatic groups, halogens (except fluorine), phosphorus, silicon, fullerenes and organometallic moieties have all shown significant promise. Many factors can affect intrinsic high refractive index polymer performance including molecular packing, molar volume, chain flexibility and substituent content. This mini‐review summarizes the principles behind and recent developments in intrinsic high refractive index polymers. © 2014 Society of Chemical Industry  相似文献   

5.
Low levels of functional acrylic monomers were incorporated into a core‐shell acrylic copolymer by seeded emulsion polymerization. The increase in glass transition temperature, Tg, from DSC measurement has showed that although certain amount of crosslinking reactions have occurred during the polymerization and isolation of the copolymer, the dried copolymer films could undergo further curing by UV irradiation. The structure and amount of the functional monomer, concentration of photoinitiator, and the extent of UV exposure have exerted significant influence on the Tg of the dry copolymer films. Because of the relatively low level of incorporated unsaturation, there was no significant change in FTIR during the curing of the film. Further, crosslinking of the copolymer film induced by UV irradiation has significantly increased the resistance to swelling in alkaline solution, although the gel content remained the same. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2317–2322, 2006  相似文献   

6.
A series of novel nano‐ZnO/polymer composite films with different ZnO contents was prepared through incorporation of pre‐made colloidal ZnO particles into monomer mixtures of urethane‐methacrylate oligomer and 2‐hydroxyethyl methacrylate, followed by ultraviolet (UV) radiation‐initiated polymerization. The colloidal ZnO nanoparticles with a diameter of 3–5 nm were synthesized from zinc acetate and lithium hydroxide in ethanol via a wet chemical method. In order to stabilize and immobilize the ZnO particles into the polymer matrix, the ZnO nanoparticles were further capped using 3‐(trimethoxysilyl)propyl methacrylate. Thermogravimetric analyses show that the ZnO nanoparticles were successfully incorporated into the polymer matrix and these ZnO/polymer composites have a good thermal stability. Transmission electron microscopy studies indicate the ZnO nanoparticles were uniformly dispersed in the polymer and they remained at the original size (3–5 nm) before immobilization. All nanocomposite films with ZnO particle contents from 1 to 15 wt% show good transparency in the visible region and luminescent properties. In addition, composite films with high ZnO content (>7 wt%) are able to absorb UV irradiation below 350 nm, indicating that these composite films exhibit good UV screening effects. Copyright © 2006 Society of Chemical Industry  相似文献   

7.
Amphiphilic thioether‐containing core‐shell polymers were synthesized by two‐step reaction of hyperbranched polyglycerol (PG): first the hydroxyls of PG were O‐alkylated with 1‐bromo‐3‐chloropropane by improved Williamson reaction, and 31.6% of the hydroxyls were transformed to allyl groups and 22.4% of hydroxyls to 3‐chloropropyl; then the residual 3‐chloropropyl groups were efficiently S‐alkylated with 1‐dodecanethiol. Thus the amphiphilic polymers composed of hydrophobic thioether‐containing shell and hydrophilic PG core were formed and could be used as template for the synthesis of zero‐valent gold nanoparticles by the coordination interaction between gold species and thioether. The resulting colloids were stable and the size of the encapsulated gold nanoparticles could be adjusted by changing the molecular weight/size of the PG core of the amphiphilic derivatives. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 509–514, 2006  相似文献   

8.
Benzophenone diallyl ester (I) and benzophenone tetraallyl ester (II) based on 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) with allyl alcohol (AAL) were synthesized. Glycidyl methacrylate (GMA) was added to I and formed diallyl diglycidyl methacrylate (III). These BTDA‐based allyl‐containing compounds (II and III) reacted with 1,4‐butanedithiol and 4,4′‐thiol‐bisbenzene‐thiol to produce ultraviolet (UV)‐curable resins via a thio–ene addition reaction. The ester (III) was cured easily when exposed to UV or sunlight radiation without any photoinitiator and only required a lower thermal curing temperature. The diallyl ester (I) and tetraallyl ester (II) required the addition of benzophenone to increase the photosensitivity, which reduced the exposition time. These resins used AAL as a monomer to successfully reduce the oxygen effect of the photocuring. The resin BTDA–2Allyl–2GMA had a glass‐transition temperature of 166°C and a hardness of 6H. The resultant UV‐curable coatings had excellent hardness, chemical resistance, adhesion, and tensile properties. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1878–1885, 2002  相似文献   

9.
Optical absorbance measurements have been performed on the epoxy resin and the composites prepared by its modification with two different oxime derivatives (benzaldoxime and 2‐furaldoxime) in the wavelength interval of 190–680 nm by unpolarized light. Using the experimental absorbance data, dielectric constant and refractive index dispersion have been determined by means of standard oscillator fit procedure. Moreover, based on the dispersion analysis, direct and indirect band gap energies of the samples have been calculated. It is found that direct band energy for epoxy is nearly 3.49 eV, while its value for the oxime derivatives has been increased up to the 4.15 eV. Another important result to be pointed out is that the absorbance for the 2‐furaldoxime doped resin has been greatly increased in a respectively, narrow interval (~ 30 nm wide) in the UV region, while in the case for the benzaldoxime doped sample, a decreasing has been observed in the absorbance at the same region. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Cationic UV‐curable methacrylate copolymers consisting of glycidyl methacrylate, iso‐butyl methacrylate, and 2,2,3,4,4,4‐hexafluorobutyl methacrylate were synthesized, and their structures were characterized by FTIR, 1H NMR, and 13C NMR. A series of UV‐cured composite films based on the synthesized copolymers and an alicyclic epoxy resin, 3,4‐epoxycyclohexylmethyl‐3,4‐epoxycyclohexanecarboxylate (CE) were obtained through photopolymerization. Their surface contact angle, chemical ability, gloss, light transmittance, thermal behavior, micromorphology, and shrinkage were investigated. Results indicated that these cured resins showed excellent gloss and visible light transmittance; after the combination of the copolymers and CE, and in the presence of fluorine in the curing systems they exhibited relatively fine water resistance, chemical, and thermal stability. It was observed that these copolymers could decrease the degree of the volume shrinkage to CE. The UV‐curable materials may have promising applications in optical fiber coatings, flip chip and Organic Light‐Emitting Diode (OLED) packing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

11.
Tantalum pentoxide (Ta2O5) nanoparticles with the sizes in the range of 20–50 nm were prepared via a chemical route in which the oleic acid (OLEA) was adopted as the surfactant for the synthesis process. X‐ray diffraction (XRD) revealed the as‐synthesized Ta2O5 transforms from amorphous to hexagonal and orthorhombic structures at the temperatures of 700°C and 750°C, respectively, illustrating the suppression of recrystallization temperature of Ta2O5 due to the particle size reduction. UV‐curable nanocomposites containing the Ta2O5 nanoparticles and acrylic matrix were also prepared. Thermogravimetry analysis (TGA) found an about 10–20°C improvement on the 5% weight‐loss thermal decomposition temperatures (Tds). Dielectric measurement showed that the dielectric constant of nanocomposite increases with the increase in the filler loading without severe deterioration of dielectric loss. The increment of dielectric constants was ascribed to the addition of high‐dielectric inorganic fillers as well as the presence of interfacial polarization at the organic/inorganic interfaces. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
C2-Symmetric 9,9′-spirobifluorene-containing polyesters (PEs) were synthesized by polycondensation of 2,2′-dihydroxy-9,9′-spirobifluorene (1) with bis(acyl chloride)s (2) at 230 °C in diphenylether. The molecular weights of PEs 3a-3f were sufficiently high (Mw 13,400-41,600). PEs displayed high thermal stability. The glass transition temperatures (Tg) estimated by differential scanning calorimetry analysis appeared in a range 177-352 °C depending on the spacer structure, while the 5% decomposition temperatures (Td5) measured by thermogravimetric analysis were over 416 °C both under nitrogen atmosphere and in air. PEs showed good solubility in typical organic solvents such as CHCl3 and THF easily to afford the tough, transparent, and flexible cast films. The transmittance of the polymer films reached over 90% in the wavelength range from ca. 410-900 nm. In addition, PEs exhibited higher refractive index rather than that of commercially available 9,9-diarylfluorene-containing PE, in addition to very low degree of birefringence presumably due to the C2-symmetric structure.  相似文献   

13.
Crystalline nanoparticles of barium titanate (BT) are incorporated into polyimide (PI) to fabricate highly refractive, anti‐UV‐degradable nanocomposite films with high permittivity and thermal stability. For homogeneous incorporation of BT nanoparticles into the PI matrix, the BT nanoparticles are surface modified by phthalimide with the aid of a silane coupling agent as a scaffold. The PI nanocomposites are prepared by in situ polymerization in which a diphthalic anhydride and a diamine are used to form the PI matrix in the presence of the surface‐modified nanoparticles. The refractive index of the transparent nanocomposite films reaches 1.85 at a nanoparticle content of 59 vol% with a high dielectric constant of ε = 37 and thermal stability up to 460 °C. Copyright © 2012 Society of Chemical Industry  相似文献   

14.
Ultraviolet (UV)/moisture dual‐curable polysiloxane acrylates (PSAs) were prepared from N,N‐bis[3‐(triethoxysilyl)propyl]amine (G402) and ethoxylated trimethylolpropane triacrylate (EB160) through Michael addition. The obtained prepolymers were characterized by 1H‐NMR and FTIR. The rheological behavior of the prepolymers exhibited the properties of a Bingham fluid and the apparent viscosity was directly correlated with molecular weight. The photocuring kinetics of PSA were studied using photo‐DSC and all the polymerization conversions were high. With increasing content of tertiary amine in the prepolymer, the photocuring rate in air increased as well. The moisture‐curing kinetics of the prepolymers was studied using FTIR. It was found that the curing mechanism may be described as the transforming of Si O C into Si O Si structure, which was consistent with the theoretical expectation. DSC and TGA were used to characterize the glass‐transition temperatures and the thermomechanical stability of the prepolymers. Measurements of physical properties showed excellent gloss, impact strength, and high electric resistance for both UV‐ and moisture‐cured films, but poor adhesion for UV‐cured films and lower hardness for moisture‐cured films. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 846–853, 2005  相似文献   

15.
A facile method to synthesis of CaWO4:Ln3+ nanocrystals and transparent CaWO4:Ln3+/polystyrene (PS) or polymethyl methacrylate (PMMA) copolymer films with outstanding luminescent property and high transparency is proposed. The average diameter of CaWO4:Ln3+ nanorods is 3.3 ± 3 nm, and the average length is 40.3 ± 20 nm. The as-prepared CaWO4:Ln3+/PS or PMMA copolymer films with high solids loading (>5 vol%) exhibit excellent near-ultraviolet absorption and outstanding visible transparency under the naked eye. The experiment results about the relationship between the solids loading and the film transparency are compared and analyzed. These optical results suggest that our nanorod has a versatile strategy for producing highly transparent functional luminescent composites, which indicates the promising applications in the field of optoelectronics in the future.  相似文献   

16.
Three novel kinds of linear silicon‐containing hybrid polymers with Si?C≡C units were synthesized by polycondensation reactions using the Grignard reagent method. All the polymers were thermosetting, highly heat‐resistant, moldable and easily soluble in common organic solvents. The structure, curing behavior, thermal and oxidative properties were characterized using Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, gel permeation chromatography, differential scanning calorimetry and thermogravimetric analysis. The results obtained can provide theoretical guidance for determining the curing of the resin system. In addition, the cured polymers exhibit excellent thermal and oxidative stabilities with temperatures of 5% weight loss (Td5) above 480 °C and 450 °C in nitrogen and air respectively; the residues at 1000 °C were above 70.0% and 45.0% respectively. The thermal and oxidative stabilities of the polymers are attributed to a crosslinking reaction between the Si?H and C≡C bonds or C≡C bonds. These polymers have the potential for use as high‐temperature‐resistant resins and ceramic precursors. © 2013 Society of Chemical Industry  相似文献   

17.
In this article, a new method to synthesize novel metaloquinolate (AlQ3, ZnQ2)‐containing polymers is reported. A model polymer with 8‐hydroxyquinoline ligands can be obtained by free‐radical copolymerization with methyl methacrylate (MMA), then metaloquinolate (AlQ3, ZnQ2)‐containing polymers are prepared by coordinating reaction with di(8‐hydroxyquinoline) aluminum (AlQ2) chelates or mono (8‐hydroxyquinoline) zinc (ZnQ) chelates without crosslinking. The structures of products are confirmed by NMR, FTIR, ultraviolet‐visible, elementary analysis, photoluminescence spectrum, and gel permeation chromatography analysis. They are soluble in common solvents and suitable to form films. The use of AlQ2 and ZnQ avoided the crosslinking caused by the AlQ3, ZnQ2 formation between different polymer chains. Different from the traditional small organic molecules in organic light‐emitting diodes (OLEDs) fabrication, the polymer can be processed by spin coating without phase separation. Compared to the PMMA or MMA‐co‐HEMA‐CH2‐Hq, the Tg of the metaloquinolate‐containing polymers was much higher. It should be of interest for OLED applications. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1945–1952, 2006  相似文献   

18.
UV‐curable nanocomposites were prepared by the blending method or the in situ method with nanosilica obtained from a sol–gel process. The microstructure and properties of the nanocomposite coatings were investigated using 29Si‐NMR cross‐polarization/magic‐angle spinning, transmission electron microscopy (TEM), Fourier transform IR (FTIR), differential scanning calorimetry (DSC), and UV–visible (UV–vis) spectra, respectively. The NMR and TEM showed that during the blending method, tetraethyl orthosilicate (TEOS) completely hydrolyzed to form nanosilica particles, which were evenly dispersed in the polymer matrix. However, for the in situ method, TEOS partially hydrolyzed to form some kind of microstructure and morphology of inorganic phases intertwisted with organic molecules. FTIR analysis indicated that the nanocomposites prepared from the in situ method had much higher curing rates than those from the blending method. DSC and UV–vis measurements showed that the blending method caused higher glass‐transition temperatures and UV absorbance than the in situ method. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1119–1124, 2005  相似文献   

19.
The UV‐curable urethane‐acrylates based on 2‐hydroxyethyl methacrylate (HEMA)‐terminated polyurethane (PU) for lithographic and coating applications are investigated in this study. Series of PU prepolymers were made from 4,4‐diphenyl methane diisocyanate (MDI), poly(propylene oxide) glycol (PPG 400), poly(butylene adipate)glycol (PBA 500), or poly(tetramethylene oxide) glycol (PTMO 1000) and are terminated with HEMA. The 2,2‐azobisisobutyronitrile (AIBN) was used as a UV‐initiator under air atmosphere. The curing kinetics of HEMA‐terminated PU film were studied. The curing analysis, using FTIR and reaction kinetics, indicate the reaction rate equation correlates well with the film thickness [T], initiator concentration [I], unreacted double bond concentration [C?C], and exposed energy [E] of the reaction system. The kinetic rate equation for the UV‐curable reaction can be written as © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3162–3166, 2004  相似文献   

20.
Developments in self‐assembly methods allow access to hierarchical materials featuring a wide range of functionality and applications. Polymer‐based self‐assembly of nanoparticles opens up new avenues for the fabrication of highly structured nanocomposites that can serve as bridges between ‘bottom‐up’ and ‘top‐down’ methods. Of various interactions leading to self‐assembly of nanocomposites, hydrogen bonding and electrostatic interactions are commonly utilized. In this review, we illustrate the design and subsequent property tuning of various self‐assembled nanocomposite materials that were developed based on these interactions. Copyright © 2007 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号