首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张建耀  刘少成 《弹性体》2007,17(4):39-43
利用红外光谱、差示扫描量热法等方法研究了高密度聚乙烯(HDPE)、线性低密度聚乙烯(LLDPE)及其共混物的乙烯基三乙氧基硅烷(VTEOS)接枝及交联产物的分子结构、熔融行为。结果表明,VTEOS接枝交联PE能力为:LLDPE>HDPE/LLDPE共混物>HDPE;接枝和交联使HDPE、LLDPE及其共混物的结晶度和熔点降低,晶粒变得不均匀。  相似文献   

2.
The effects of linear low density polyethylene (LLDPE) grafting with vinyltrimethoxysilane by different types and contents of peroxide were studied. When grafting silane onto LLDPE, with 0.10 phr of Dicumyl peroxide (DCP) or 0.05 phr content of 2,5‐Dimethyl‐2,5‐di (tert‐butyl‐peroxy)‐hexane (DHBP), it was found that the grafting effect was improved; however, as Di(2‐tert‐butylperoxypropyl ‐(2))‐benzene (DIPP) or excess DHBP was used, LLDPE was supposed to cause self‐crosslinking, which reduced the grafting effect of silane and was invalid in the processing of extrusion. In this study, vinyl trimethoxysilane (VTMS) was grafted onto various polyethylenes (HDPE, LLDPE, and LDPE) using DCP as an initiator in a twin screw extruder. The grafted polyethylenes were able to crosslink utilizing water as the crosslinking agent. The effects of varied crosslinking time on the mechanical properties of the crosslinked polyethylenes were studied. It was found that the HDPE and LLDPE were apt to crosslink during the grafting process and thus decreased the grafting ratio. Multiple melting behavior was observed for crosslinked LDPE and LLDPE. Mechanical and thermal properties of the crosslinked PE are much better than that of uncrosslinked PE. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2383–2391, 2005  相似文献   

3.
The silane grafting and moisture crosslinking of different grades of polyethylene have been investigated. Three types of polyethylene (HDPE, LLDPE, and LDPE) with different molecular structures and similar melt flow indices were selected. The initiator was dicumyl peroxide (DCP), and the silane was vinyltrimethoxysilane. The grafting reaction was carried out in an internal mixer. The extent of grafting and the degree of crosslinking were determined, and hot‐set tests were carried out to evaluate the crosslink structure of the different polyethylenes. The LLDPE had the highest degree of grafting, while the LDPE had the least. The rate of crosslinking for LDPE was higher than that of HDPE and LLDPE. The gel content of LDPE was higher than that of HDPE and LLDPE. Hot‐set elongation and the number‐average molecular weight between crosslinks (Mc) were lower for LLDPE and LDPE than for HDPE. Increasing the silane/DCP percentage led to peroxide crosslinking, thereby decreasing the Mc and hot‐set elongation. The number‐average molecular weight (Mn), molecular weight distribution, and number of chain branches were the most important parameters affecting the silane grafting and moisture crosslinking. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

4.
Effects of silane grafting and water crosslinking reactions on crystallizations, melting behaviors, and dynamic mechanical properties of the LDPE/LLDPE blends are investigated using DSC and DMA. From DSC data, cocrystallization of LDPE and LLDPE does not occur, but cocrosslinking of these two polymers is evidenced at the experimental temperature of 100°C, a temperature lower than melting temperatures of both polymers. The water crosslinking reactions of the LLDPE‐rich blends enable development of a new phase having a melting endotherm in between that of LDPE and LLDPE. From the thermal fractionation data, interaction between LDPE and LLDPE is observed, and compatibilization of the blends can be achieved by the crosslinking reactions. From DMA data, the storage moduli of the blends are not found to be consistent with their degrees of crosslinking. The storage moduli of the blends are not simply determined by the degree of crosslinking but determined by very complicated but unclear factors. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1808–1816, 2001  相似文献   

5.
硅烷接枝交联LDPE、LLDPE及其共混物的结构研究   总被引:4,自引:0,他引:4  
利用红外光谱、凝胶渗透色谱、热延伸试验、差示扫描量热法、扫描电子显微镜等方法研究了低密度聚乙烯(LDPE)、线型低密度聚乙烯(LLDPE)及其共混物的乙烯基硅烷接枝及交联产物的分子结构、熔融行为和形态。结果表明:硅烷接枝后,LDPE、LLDPE的重均摩尔质量小幅增加;硅烷接枝交联能力为:LLDPE〉LDPE/LLDPE共混物〉LDPE;接枝和交联使LDPE、LLDPE及其共混物的结晶度降低,晶粒变得不均匀;硅烷接枝和交联能增加LDPE/LLDPE共混物的相容性;交联结构提高了LDPE、LLDPE及其共混物的抗冲性。  相似文献   

6.
Linear low‐density polyethylene (LLDPE)/poly(vinyl alcohol) (PVA) blends were prepared by melt mixing. LLDPE/PVA weight ratios between 90/10 and 40/60 were studied. The effects of the silane coupling agent 3‐(trimethoxysilyl)propyl methacrylate on processability, gel fraction, component interaction, compatibility, thermal stability, tensile properties, and morphology of the LLDPE/PVA blends were investigated. The results indicated that the presence of silane increased the equilibrium torque of the LLDPE/PVA blends because of crosslinking and better compatibility between LLDPE and PVA. The degree of crosslinking was quantified by gel fraction measurements, and crosslinking was confirmed by Fourier Transform Infrared Spectroscopy analysis. The melting temperature depression of PVA and LLDPE further suggested the formation of crosslinks. The thermal stability and tensile properties such as tensile strength, elongation at break, and Young's modulus of the blends also increased with the incorporation of silane. Improved compatibility between LLDPE and PVA in the blends with silane was demonstrated by the interconnected rough material observed in scanning electron microscopy images that differed from the morphology of the LLDPE/PVA blends without silane. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
Moisture crosslinking would be a good substitution to cure ethylene-vinyl acetate-glycidyl methacrylate rubber (EVM-GMA) due to the characteristics of low cost and environmental friendliness. Our previous study found amino silane grafted onto EVM-GMA with low degree due to the low epoxy group content in rubber matrix. Consequently, the moisture crosslinking density of rubber compound is low. So, it is necessary to find an effective method to improve the moisture crosslinking density of EVM-GMA. In this paper, EVM-GMA grafted with γ-aminopropyltriethoxysilane and maleic anhydride (EVM-GMA-g-APTES/MAH) composites were prepared by melt blending, and then the moisture crosslinking of composites was achieved in a 90°C water bath with the aid of catalyst dibutyltin dilaurate (DBTL). The grafting of MAH onto the EVM-GMA molecular chain and its reaction with amino silane were confirmed by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR). Furthermore, the moisture crosslinking density of the samples before and after grafting MAH was compared. The results indicated that the moisture crosslinking density of the grafted MAH was higher than that of the unmodified rubber, thus achieving better overall mechanical properties. Therefore, grafting MAH was a feasible way to improve the moisture crosslinking density of EVM-GMA with the existence of silane.  相似文献   

8.
Noncrosslinking linear low‐density polyethylene‐grafted acrylic acid (LLDPE‐g‐AA) was prepared by melt‐reactive extrusion in our laboratory. The thermal behavior of LLDPE‐g‐AA was investigated by using differential scanning calorimetry (DSC). Compared with neat linear low‐density polyethylene (LLDPE), melting temperature (Tm) of LLDPE‐g‐AA increased a little, the crystallization temperature (Tc) increased about 4°C, and the melting enthalpy (ΔHm) decreased with an increase in acrylic acid content. Isothermal crystallization kinetics of LLDPE and LLDPE‐g‐AA samples were carried out by using DSC. The overall crystallization rate of LLDPE was smaller than that of grafted samples. It showed that the grafted acrylic acid monomer onto LLDPE acted as a nucleating agent. Crystal morphologies of LLDPE‐g‐AA and LLDPE were examined by using SEM. Spherulite sizes of LLDPE‐g‐AA samples were lower than that of LLDPE. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2626–2630, 2002  相似文献   

9.
The objective of this study is to investigate the effects of carbon nanotube (CNT) content, surface modification, and silane cross‐linking on mechanical and electrical properties of linear low‐density polyethylene/multiwall CNT nanocomposites. CNTs were functionalized by vinyltriethoxysilane to incorporate the ─O─C2H5 functional groups and were melt‐blended with polyethylene. Silane‐grafted polyethylene was then moisture cross‐linked. Silanization of CNT was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), and EDX analysis. Hot‐set test results showed that silane cross‐linking of polyethylene and incorporation of modified CNTs into polyethylene led to an increase in cross‐linking density and the number of entanglements resulting in a decrease in elongation. It was found that the addition of pristine multiwall carbon nanotubes (MWCNTs) and functionalized MWCNTs does not affect silane cross‐linking density. Silane modification resulted in a stronger adhesion of the silane cross‐linked LLDPE to silanized MWCNTs according to scanning electron microscopy micrographs. Additionally, the electrical tests revealed that the silane modification of CNTs results in an improvement in electrical properties of nanocomposites, while silane cross‐linking will not have an effect on electrical properties. Rheological properties of MWCNT/LLDPE nanocomposites have been studied thoroughly and have been discussed in this study. Moreover, according to TGA test results, modification of the MWCNTs led to a better dispersion of them in the LLDPE matrix and consequently resulted in an improvement in thermal properties of the nanocomposites. Crystallinity and melting properties of the nanocomposites have been evaluated in detail using DSC analysis. J. VINYL ADDIT. TECHNOL., 26:113–126, 2020. © 2019 Society of Plastics Engineers  相似文献   

10.
硅烷交联高密度聚乙烯的正交实验研究   总被引:6,自引:0,他引:6  
研究了硅烷交联聚乙烯的整个反应过程,以HDPE、过氧化物和不饱和硅烷为基本原料,首先通过挤出熔融法将不饱和硅烷接枝到聚乙烯链上,然后将接枝物进行水解交联反应制得交联产品。通过实验研究了引发剂、硅烷、催化剂对拉伸强度的影响。在工艺条件得到优化的情况下,应用三因素四变量正交设计确定了最佳配方。引发剂、硅烷、催化剂的用量分别为 1phr、1.4phr、0.6phr。讨论了交联温度、交联时间对拉伸强度以及交联时间对凝胶率和维卡软化点的影响  相似文献   

11.
采用特殊结构的硅烷偶联剂对乙烯-乙酸乙烯酯共聚物(EVA)进行化学熔融接枝。利用硅烷接枝的EVA作为基础树脂,辅以复合引发剂、助交联剂以及各种老化助剂,经过热挤出成型制备出EVA胶膜母料。考察了复合引发剂用量对EVA胶膜交联度的影响,研究了硅烷接枝EVA和未接枝EVA胶膜的剥离强度及耐老化性能。结果表明:硅烷接枝EVA胶膜最佳的固化温度为160℃,最佳固化时间为11 min;硅烷接枝EVA具有良好的剥离强度、耐湿热和紫外光老化性能。  相似文献   

12.
铝塑复合管硅烷交联聚乙烯专用料的研究   总被引:2,自引:0,他引:2  
研究了高密度聚乙烯(HDPE)/线性低密度聚乙烯(LLDPE)硅烷接枝交联体系。分析了过氧化二异丙苯(DCP),乙烯基三乙氧基硅烷(VTES),加工设备及工艺条件(温度,螺杆转速)对体系熔体流动速率(MFR)和凝胶含量的影响。并用Buss混炼设备制备出高流动性的铝塑复合管硅烷接枝交联PE专用料。  相似文献   

13.
Abstract

Non-cross-linking linear low-density polyethylene-grafted-acrylic acid (LLDPE-g-AA) was prepared by melting reactive extrusion in our laboratory. The thermal behavior of LLDPE-g-AA was investigated by using differential scanning calorimetry (DSC). Compared with neat linear low-density polyethylene (LLDPE), melting temperature (Tm) of LLDPE-g-AA increased a little, the crystallization temperature (Tc) increased about 4[ddot] C, and the melting enthalpy (δ Hm) decreased with increase of acrylic acid content. Isothermal crystallization kinetics of LLDPE and LLDPE-g-AA samples was carried out using DSC. The overall crystallization rate of LLDPE was smaller than that of grafted samples. It showed that the grafted acrylic acid monomer onto LLDPE acted as a nucleating agent. Morphologies of LLDPE-g-AA and LLDPE were examined using SEM. Spherocrystal diameters of LLDPE-g-AA samples were lower than that of LLDPE.  相似文献   

14.
Silane‐crosslinked polypropylene (PP) has been prepared first by the grafting of silane onto the backbone of PP in a melt process and then by crosslinking in warm water. The effects of type and concentration of silane and peroxide on the silane grafting on PP were investigated. The thermal behavior of the silane‐crosslinked PP was studied by thermogravimetric (TG) and differential scanning calorimetry (DSC) methods. TG results show that PP prepared via silane crosslinking increases its thermal stability greatly. It has been found from DSC measurements that the crystallization temperatures, ie the onset temperature and peak temperature of the exotherm of the silane‐crosslinked PP, increase compared with those of the pure PP. The silane crosslinking hardly changes the crystallinity degree of PP. The crystallization behavior of the silane‐crosslinked PP was also studied by wide‐angle X‐ray diffraction analysis. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Peroxide initiated vinylsilane grafting of polypropylene in an intensive mixer, and the subsequent water crosslinking process were studied. Different concentrations of vinyl trimethoxysilane and dicumyl peroxide were used. The materials obtained after mixing in the rheocord were hot pressed at 190°C. The melt viscosity of the obtained sheets, the melting enthalpy and melting temperature (DSC, differential scanning calorimetry), the mechanical properties and the thermal decomposition behavior (TG, thermogravimetric analysis) were studied. No evidence of grafting during the rheocord processing was observed. Nevertheless, for the hot pressed sheets with concentrations higher than 4 phr of vinyl silane an important increase in the melt viscosity was observed. This increase agrees with the change observed in the mechanical properties, which show a maximum for the water crosslinked samples containing 4 phr of vinyl silane. The modulus increases by 39% at 90°C and 33% at 130°C, while the tensile strength rises by ~22% at both temperatures. The silane grafted water crosslinked samples show a more stable thermal behavior than both the silane grafted samples and the unmodified polypropylene.  相似文献   

16.
Our main objective of this study was to study the parameters affecting the free‐radical melt grafting of maleic anhydride (MA) onto linear low‐density polyethylene (LLDPE) with dicumyl peroxide (DCP) in an internal mixer. The degree of grafting (DG) was measured with titrometry and Fourier transform infrared spectroscopy. The extent of chain‐branching/crosslinking was evaluated with gel content and melt flow index measurements. The flow behavior and melt viscoelastic properties of the grafted samples were measured by using rheometric mechanical spectrometry. Feeding order, DCP and MA concentration, reaction temperature, rotor speed, and grade of LLDPE were among parameters studied. The results show that the reactant concentration (MA and DCP) played a major role in the determination of the grafting yield and the extent of the chain‐branching/crosslinking as competitive side reactions. The order of feeding also had an appreciable effect on the DG and the side reactions. Increasing the rotor speed increased the grafting yield and reduced side reactions by means of intensification of the mixing of reactants into the polyethylene (PE) melt. Chain‐branching dominated the side reactions for lower molecular weight PE, whereas for higher molecular weight PE, chain‐branching led to crosslinking and gel formation. The results of the melt viscoelastic measurements on the grafted samples provided great insight into the understanding of the role of influential parameters on the extent of side reactions and resulting changes in the molecular structure of the grafted samples. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 141–149, 2006  相似文献   

17.
Changes in the molecular orientation, melting behavior, and percent crystallinity of the individual components in a fibrous blend of isotactic polypropylene (iPP) and high-density polyethylene (HDPE) that occur during the melt extrusion process were examined using wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC). The crystalline orientation of each component was found using Wilchinsky's treatment of uniaxial orientation and described by the Hermans–Stein orientation parameter. The amorphous orientation was found by resolving the X-ray diffraction pattern in steps of the azimuthal angle into its iPP and HDPE crystalline and amorphous reflections. The utility of DSC and WAXD analyses to capture the effects of small differences in processing, and the use of these results as fingerprints of a particular manufacturing process were demonstrated. Major increases in the melting temperatures, percent crystallinities, and molecular orientations of the iPP and HDPE components occurred during the main stretching stage of the melt extrusion process. The annealing stage was found to have little to no effect on the melting behavior and molecular orientation of these components. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

18.
Vinyl trimethoxysilane (VTMS) was grafted onto metallocene‐based polyethylene–octene elastomer (POE) using a free‐radical reaction of VTMS and dicumyl peroxide as an initiator, and then the grafted POE was crosslinked in the presence of water. The effects of VTMS concentration on crystallization behavior, mechanical properties, and thermal properties of POE before and after crosslinking were studied in this article. Multiple melting behaviors were found for POE after silane crosslinking by using DSC measurement. Degree of crystallization of silane‐crosslinked POE decreases from 18.0 to 14.3%, with increase of VTMS from 0 to 2.0 phr. Tensile strength of silane‐crosslinked POE reaches a maximum of 28.4 MPa when concentration of VTMS is 1.5 phr, while elongation at break is 487%. TG shows that the temperature of 10% weight loss for pure POE is 405°C, while for crosslinked POE with addition of 2.0 phr VTMS the value comes to 452°C, indicating that crosslinking significantly help improve the thermal stability of POE. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5057–5061, 2006  相似文献   

19.
In this article, we present detailed processing characteristics and structure development in a thermoplastic polyimide BTDA–DMDA in the solid-state extrusion process. This fully imidized polyimide polymer is known to crosslink at fast rates when it is brought to a molten phase even for short periods of time. This characteristic makes it difficult to process it in the molten phase and attempts at melt processing result in melt fracture and highly distorted extrudates. However, this polymer can be shaped into high-quality extrudates when it is processed below its melting temperature directly from its postpolymerization powdered state. The solid-state extrusion of precompacted BTDA–DMDA powder was studied in the temperature range from 250 to 320°C. At the temperatures from 290 to 320°C, high-quality extrudates were obtained. Below 290°C, solid-state extrusion was not possible due to the limitation of the load cell capacity of the capillary rheometer used in this research. Above 320°C, the extrudates were found to be of poor quality as a result of degradation and crosslinking in the molten phase. Structural characteristics of the samples produced by solid-state extrusion was investigated by the microbeam X-ray diffraction technique. The thermal behavior of the extrudates was also characterized by differential scanning calorimetry (DSC). The DSC results show that at low extrusion temperatures the samples exhibit dual endothermic peaks and are highly crystalline in an extruded state. The higher melting peak located at about 350°C is due to the melting of the new crystalline phase that has developed partially during the solid-state extrusion process and partially during the recrystallization process that takes place at temperatures at and slightly above the primary melting process during the DSC heating scan. This has been confirmed by DSC, depolarized light hot-stage video microscopy, and wide-angle X-ray diffraction studies. The long spacing of the higher melting crystals was found to be much larger than that of the lower melting crystals, as evidenced by the small angle X-ray scattering studies. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
A silane‐grafting water‐crosslinking approach was developed to crosslink poly(L ‐lactide) (PLLA) by grafting vinylalkoxysilane onto PLLA using dicumyl peroxide, followed by silane hydrolysis to form siloxane linkages between PLLA chains. The degree of silane grafting onto PLLA was qualitatively characterized using Fourier transform infrared spectroscopy and quantitatively determined using inductively coupled plasma mass spectrometry. Crosslinked PLLA films were obtained by curing of silane‐grafted PLLA in hot water. Gel fractions were evaluated in order to calculate the crosslinking reaction kinetics and crosslinking density. Various techniques were used to investigate the effect of silane water‐crosslinking on the thermomechanical properties, hydrolysis resistance and biodegradation of PLLA. In addition to an improvement in thermal stability and mechanical properties, hydrolysis resistance was significantly enhanced as a result of silane water‐crosslinking of PLLA. Moreover, the biodegradation of silane water‐crosslinked PLLA was retarded compared with neat PLLA. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号