首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, experimental and numerical studies were performed to investigate the relationship among the functionalization method, weight fraction of MWCNTs, thermal imidization cycle, and mechanical properties of various PAI/MWCNT composite films. Poly(amide‐co‐imide)/multiwalled carbon nanotube composite films were prepared by solution mixing and film casting. The effects of chemical functionalization and weight fraction of multiwalled carbon nanotubes on thermal imidization and mechanical properties were investigated through experimental and numerical studies. The time needed to achieve sufficient thermal imidization was reduced with increasing multiwalled carbon nanotube content when compared with that of a pure poly(amide‐co‐imide) film because multiwalled carbon nanotubes have a higher thermal conductivity than pure poly(amide‐co‐imide) resin. Mechanical properties of pure poly(amide‐co‐imide) and poly(amide‐co‐imide)/multiwalled carbon nanotube composite films were increased with increasing imidization time and were improved significantly in the case of the composite film filled with hydrogen peroxide treated multiwalled carbon nanotubes. Both the tensile strength and strain to failure of the multiwalled carbon nanotube filled poly(amide‐co‐imide) film were increased substantially because multiwalled carbon nanotube dispersion was improved and covalent bonding was formed between multiwalled carbon nanotubes and poly(amide‐co‐imide) molecules. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
A novel conjugated polymer film with microscale/submicroscale porous morphology fabricated from crosslinked poly(fluorene‐co‐carbazole) (PFC1) was developed for the detection of 2,4‐dinitrotoluene (DNT). The fluorescent conjugated polymer PFC1 with pendant photo‐crosslinkable coumarin groups was synthesized by Suzuki coupling polymerization. Taking advantage of the phase separation of PFC1/polystyrene (PS) blends in the film and the solvent‐resistant network, porous structured films were prepared by removal of PS. Films with porous morphologies exhibited marked responsive sensitivity to trace DNT vapor due to the unique porous structure favoring the diffusion of and association with DNT molecules. The formation of a crosslinked network by dimerization of the coumarin moieties may be beneficial for isolating the polymeric backbones, thus to some extent preventing chain aggregation. This facile fabrication method enabled the crosslinked porous films to be efficient fluorescence chemosensors towards the detection of trace amounts of DNT vapor.© 2012 Society of Chemical Industry  相似文献   

3.
Ibuprofen‐loaded chitosan/gelatin (CS/GE) composite films were fabricated in this work. The morphology of the composite film was investigated using scanning electron microscopy. The functional groups of the composite film before and after crosslinking were characterized using Fourier transform infrared spectroscopy. Meanwhile, the mechanical properties, antibacterial performance, cytocompatibility, and hemostatic activity of the composite films were investigated. The results show that the amount of CS affected the mechanical properties and liquid uptake capacities of the composite films. The composite film showed better bactericidal activity against Staphylococcus aureus than Escherichia coli. In vitro drug‐release evaluations showed that crosslinking could control the drug‐release rate and period in wound healing. Both types of CS/GE and drug‐loaded CS/GE composite films also showed excellent cytocompatibility in cytotoxicity assays. The hemostatic evaluation indicated that the composite film crosslinked by glutaraldehyde in rabbit livers had a dramatic hemostatic efficacy. Therefore, ibuprofen‐loaded CS/GE composite films are potentially applicable as a wound dressing material. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45441.  相似文献   

4.
Waxberry‐like poly(acrylonitrile‐co‐vinyl acetate)/Ag composite microspheres have been prepared simply and directly via a one‐step self‐assembly approach. The morphology, formation, and catalytic activity of the as‐prepared composite microspheres are further investigated. The difference in the solubility among different segments of poly(acrylonitrile‐co‐vinyl acetate) is the basis of the formation of poly(acrylonitrile‐co‐vinyl acetate) microspheres, while the ? CN groups on the surface of poly(acrylonitrile‐co‐vinyl acetate) microspheres play an important role in the growth process from poly(acrylonitrile‐co‐vinyl acetate) microsphere to poly(acrylonitrile‐co‐vinyl acetate)/Ag composite microsphere. It is found that bulk quantities of composite microspheres with high density of Ag nanoparticles on the surface can be obtained readily by controlling the concentration of AgNO3. The as‐prepared composite microsphere exhibits excellent catalytic activity on reduction of p‐nitrophenol. This study may shed some light on the self‐assembly of other metal/polymer composite microspheres. POLYM. ENG. SCI., 50:1767–1772, 2010. © 2010 Society of Plastics Engineers  相似文献   

5.
This work was designed to study the effects of inorganic calcite powder on structurally different copolymer [poly(propylene‐co‐ethylene)] and terpolymer [poly (propylene‐co‐ethylene‐co‐1‐butene)] matrices and the possibility of making a suitable porous composite film. The yield stress of the composites did not improve, but the modulus increased gradually with the filler loading. The theoretical and experimental modulus and yield stress of the composites provided evidence of filler and polymer adhesion behavior. The impact strength showed little enhancement up to a 20 wt % loading for the poly(propylene‐co‐ethylene‐co‐1‐butene) system. The number‐average, weight‐average, and z‐average air‐hole diameters were compared with respect to the draw ratio as well as the calcite loading. The morphology of a micromechanically deformed composite, studied with an image analyzer, revealed that the aspect ratio and area of the air holes increased linearly as a function of the draw ratio, but the change in the aspect ratio upon filler loading was not remarkable. A suitable loading of a filler up to 30 wt % was good for controlling the porosity in the composite films. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Waterborne poly(styrene‐co‐butyl acrylate) was prepared via miniemulsion polymerization in which nanoclay (Cloisite® 30B, modified natural MMT) in different concentrations was encapsulated. Scanning electron microscopy, X‐ray diffraction, and transmission electron microscopy confirmed the encapsulation and intercalated‐exfoliated structure of Cloisite® 30B within poly(styrene‐co‐butyl acrylate). The effect of nanoclay content on water vapor permeability, water uptake, oxygen permeability, thermal, and mechanical properties of thin films containing 1.5, 2.56, 3.5, and 5.3 wt % encapsulated Cloisite® 30B in poly(styrene‐co‐butyl acrylate) was investigated. The presence of encapsulated Cloisite® 30B within the polymer matrix improved tensile strength, Young's modulus, and toughness of the nanocomposites depending on the nanoclay content. Water vapor transmission rate, oxygen barrier properties, and thermal stability were also improved. The results indicated that the incorporation of Cloisite® 30B in the form of encapsulated platelets improved physicomechanical properties of the nanoclay‐polymer composite barrier films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Novel electroconductive polymeric films with enhanced mechanical performance were fabricated by encapsulating reduced graphene oxide (RGO) at different concentrations (0–50 vol %) into a hyaluronic acid/gelatin/poly(ethylene oxide) (HyA/Gel/PEO) polymeric structure. The obtained RGO-reinforced polymeric films were characterized by Fourier transform infrared and scanning electron microscopy analyses. Mechanical performances were measured with a universal mechanical testing machine. The results verified that the RGO reinforcement significantly enhanced the mechanical performances of the films. To determine the biocompatibility of the polymeric films, L929 (murine fibroblast) cell lines were used. The water uptake capacities were measured using swelling tests. A four-probe method was used to measure conductivity characteristics. The conductivity results indicated that HyA/Gel/PEO film containing 20 vol % RGO has the highest average electrical conductivity (1.832 × 10−6 S/cm). All of the results demonstrated that the obtained electroconductive films could be used in biomedical fields in the future, especially in controlled drug release systems and tissue engineering. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46905.  相似文献   

8.
A new polymer electrolyte membrane prepared by radiation grafting of vinyltoluene into poly(ethylene‐co‐tetrafluoroethylene) (ETFE) film and subsequent sulfonation was developed for application in fuel cells. The effect of grafting condition on the degree of grafting was investigated in detail. Results indicated that the degree of grafting can be controlled over a wide range. The grafted films were sulfonated in a chlorosulfonic acid solution to obtain the polymer electrolyte membranes, which were characterized with respect to their use in fuel cells. It is concluded that the substituted methyl group on the vinyltoluene can improve the chemical stability of the resulting membranes, and the crosslinked ETFE‐g‐poly(vinyltoluene‐co‐divinylbenzene) membranes can be proposed for the future development of alternative low‐cost and high‐performance membranes for fuel cells. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2661–2667, 2006  相似文献   

9.
In this article, a series of amphiphilic graft copolymers, namely poly(higher α‐olefin‐copara‐methylstyrene)‐graft‐poly(ethylene glycol), and poly(higher α‐olefin‐co‐acrylic acid)‐graft‐poly(ethylene glycol) was used as modifying agent to increase the wettability of the surface of linear low‐density polyethylene (LLDPE) film. The wettability of the surface of LLDPE film could be increased effectively by spin coating of the amphiphilic graft copolymers onto the surface of LLDPE film. The higher the content of poly(ethylene glycol) (PEG) segments, the lower the water contact angle was. The water contact angle of modified LLDPE films was reduced as low as 25°. However, the adhesion between the amphiphilic graft copolymer and LLDPE film was poor. To solve this problem, the modified LLDPE films coated by the amphiphilic graft copolymers were annealed at 110° for 12 h. During the period of annealing, heating made polymer chain move and rearrange quickly. When the film was cooled down, the alkyl group of higher α‐olefin units and LLDPE began to entangle and crystallize. Driven by crystallization, the PEG segments rearranged and enriched in the interface between the amphiphilic graft copolymer and air. By this surface modification method, the amphiphilic graft copolymer was fixed on the surface of LLDPE film. And the water contact angle was further reduced as low as 14.8°. The experimental results of this article demonstrate the potential pathway to provide an effective and durable anti‐fog LLDPE film. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
We designed and prepared novel hybrid films of nanoparticles consisting of gelatin‐g‐poly(methyl methacrylate) (PMMA)/silver (Ag) polymers with ordered nanoporous, higher antibacterial activities. First, the gelatin‐grafted PMMA microspheres were fabricated with the in situ copolymerization of gelatin and alkenes under radical initiation, which acted as a stabilizer and regulator for Ag nanoparticle growth. Then, silver nitrate was entrapped in a copolymerization system at 40°C for 30 min. Finally, the gelatin‐g‐PMMA/Ag polymer hybrid films were prepared by the reduction of Ag+ with hydrazine, followed by emulsion solidification. The antibacterial activities of the gelatin‐g‐PMMA/Ag polymer hybrid films against Escherichia coli and Staphylococcus aureus were found with the disc diffusion method and colony count assays to be clear and lasting. In this study, our work not only presented a good example of a nanoporous antibacterial film material but also provided a facile method for making use of gelatin and metal/inorganic self‐assemble properties in graft copolymerization to prepare functional polymer hybrids, such as antibacterial, antithrombogenic, and dot‐quantum effect materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
Narrowly distributed poly (styrene‐co‐(4‐vinylpyridine)) microspheres are facilely prepared by a soap‐free emulsion polymerization, and their structures and properties are investigated by TEM, FTIR spectra, DSC, and DLS, respectively. The sizes and glass transition temperatures of the polymeric spheres increase with an increase of 4‐vinylpyridine in the reactive system. In addition, these polymeric spheres show good stability in water and a series of organic solvents due to their crosslinked structures. When poly(styrene‐co‐(4‐vinylpyridine)) microspheres are obtained in the reactive system where the weight ratio of 4‐vinyl pyridine to styrene is less than 4/6, they can be well dispersed in water as well as in organic solvents such as ethanol, toluene and DMF, and show obvious pH sensitive and organic solvent‐sensitive characteristics. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

12.
Crosslinked poly(1‐vinyl imidazole‐co‐acrylic acid) and crosslinked poly(1‐vinylmidazole‐co‐2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) were synthesized by radical polymerization and characterized by elemental analysis and FTIR spectroscopy. The polymerization yields were 79 and 99%, respectively. The metal ion binding properties for copper(II) and uranium(VI) were studied under noncompetitive and competitive conditions by Batch equilibrium procedure. The resin crosslinked poly(1‐vinyl imidazole‐co‐acrylic acid) showed a higher dependence on pH than crosslinked poly(1‐vinylmidazole‐co‐2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid). The retention of uranyl ions for the latter resin was close to 100% at pH 5.0. The higher maximum retention capacity was close to 0.8 mmol/g dry resin at pH 5.0. Regeneration of the resin was possible by treatment with basic eluent. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 706–711, 2006  相似文献   

13.
Novel nanostructured, high transparent, and pH sensitive poly(2‐hydroxyethyl methacrylate‐co‐methacryliac acid)/poly(vinyl alcohol) (P(HEMA‐co‐MA)/PVA) interpenetrating polymer network (IPN) hydrogel films were prepared by precipitation copolymerization of aqueous phase and sequential IPN technology. The first P(HEMA‐co‐MA) network was synthesized in aqueous solution of PVA, then followed by aldol condensation reaction, it formed multiple IPN nanostructured hydrogel film. The film samples were characterized by IR, SEM, DSC, and UV‐vis spectrum. The transmittance arrived at 93%. Swelling and deswelling behaviors showed the multiple IPN nanostuctured film had rapid response. The mechanical properties of all the IPN films improved than that of PVA film. Using crystal violet as a model drug, the release behaviors of the films were studied. The results showed that compared with PVA, which had low drug loading and exhibited high and burst release, the three IPN films had high drug loading and exhibited sustained release. Besides, the release followed different release mechanism at pH = 4.0 and pH = 7.4, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Polymeric flocculants of aluminum hydroxide‐poly[acrylamide‐co‐(acrylic acid)], AHAMAA, were prepared by solution polymerization using aluminum hydroxide as a coagulant in the presence of acrylamide (AM) and acrylic acid (AA) as a comonomer pair with N,N′‐methylenebisacrylamide as a crosslinking agent. The crosslinking was initiated by ammonium persulfate with N,N,N′,N′‐tetramethylethylenediamine as an initiator. The water absorbency of crosslinked poly[AM‐co‐AA] was always higher than that of AHAMAA and was found to be correlated to the storage modulus of the polymers, which was higher for AHAMAA than that of crosslinked poly[AM‐co‐AA]. The residual aluminum concentration of AHAMAA (0.09–0.2 mg L?1) indicated the stability of the polymer flocculant which was in good agreement with the observed tan δ and the higher G′′ and G′ values. Both the crosslinked poly[AM‐co‐AA] and AHAMAA satisfactorily reduced the turbidity of kaolin suspensions, but the latter gave a better reduction performance. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
The structure, biodegradability, and morphological properties of composite materials composed of poly(butylene succinate adipate) (PBSA) and bamboo fiber (BF) were evaluated. Composites containing acrylic acid‐grafted PBSA (PBSA‐g‐AA/BF) exhibited noticeably enhanced compatibility between the two components. The dispersion of BF in the PBSA‐g‐AA matrix was highly homogeneous as a result of ester formation and the consequent creation of branched and crosslinked macromolecules between the carboxyl groups of PBSA‐g‐AA and hydroxyl groups in BF. In addition, the PBSA‐g‐AA/BF composite was more easily processed due to a lower melt viscosity. Each composite was subjected to biodegradation tests in an Acinetobacter baumannii compost. Morphological observations indicated severe disruption of film structure after 10–20 days of incubation, and both the PBSA and the PBSA‐g‐AA/BF composite films were eventually completely degraded. The PBSA‐g‐AA/BF films were more biodegradable than those made of PBSA and exhibited a lower molecular weight and intrinsic viscosity, implying a strong connection between these characteristics and biodegradability. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
The purpose of this study was to improve the physical properties and to expand the application range of starch‐based blend films added nano‐sized TiO2/poly(methyl methacrylate‐co‐acrylamide) (PMMA‐co‐AM). Starch‐based blend films were prepared by using corn starch, polyvinyl alcohol (PVA), nano‐sized PMMA‐co‐AM, nano‐sized TiO2/PMMA‐co‐AM particles, and additives, i.e., glycerol (GL) and citric acid (CA). Nano‐sized PMMA‐co‐AM was synthesized by emulsion polymerization and TiO2 nanoparticles were also prepared by using sol–gel method. Nano‐sized TiO2/PMMA‐co‐AM particles were synthesized by wet milling for 48 h. The morphology and crystallinity of TiO2, nano‐sized PMMA‐co‐AM and TiO2/PMMA‐co‐AM particles were investigated by using the scanning electron microscope (SEM) and X‐ray diffractometer (XRD). In addition, the functional groups of the TiO2/PMMA‐co‐AM particles were characterized by IR spectrophotometry (FTIR). The physical properties such as tensile strength (TS), elongation at break (%E), degree of swelling (DS), and solubility (S) of starch‐based films were evaluated. It was found that the adding of nano‐sized particles can greatly improve the physical properties of the prepared films. The photocatalytic degradability of starch/PVA/nano‐sized TiO2/PMMA‐co‐AM composite films was evaluated using methylene blue (MB) and acetaldehyde (ATA) as photodegradation target under UV and visible light. The degree of decomposition (C/C0) of MB and ATA for the films containing TiO2 and CA was 0.506 and 0.088 under UV light irradiation and 0.586 (MB) and 0.631 (ATA) under visible light irradiation, respectively. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
This article describes cationic ring‐opening copolymerization of a bicyclic orthoester having hydroxy group (BOE‐OH) and glycidyl phenyl ether (GPE), and the volume shrinkage behavior during the copolymerization. THF soluble polyethers [poly(BOE‐OH‐co‐GPE)] were obtained by the copolymerizations at 80–180°C, while crosslinked poly(BOE‐OH‐co‐GPE) was obtained by the copolymerizations at 220–250°C. This crosslinking reaction may originate from the dehydration of methylol groups in the side chain of poly(BOE‐OH‐co‐GPE). The volume shrinkage during the cationic copolymerization reduced as the increase of the BOE‐OH feed ratio. By contrast, the volume shrinkage on the crosslinking polymerization was almost independent on the BOE‐OH feed ratio. Poly(BOE‐OH‐co‐GPE)s with higher BOE‐OH composition showed lower thermal weight loss temperature owing to the release of H2O by dehydration of methylol groups. The BOE‐OH component in the THF soluble poly(BOE‐OH‐co‐GPE)s lowered the glass transition temperature (Tg), while that in the crosslinked poly(BOE‐OH‐co‐GPE) increased the Tg probably because of the higher crosslinking density. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1356–1361, 2006  相似文献   

18.
Currently studies on antibacterial macromolecules, i. e., bactericidal and bacteriostatic ones, have been made to develop a new utilization field of polymeric materials. In these studies, there are immobilizations of iodine to quaternary ammonium salts, antibiotics, antibacterial groups to macromolecular substances, as well as syntheses of polymers with quaternary ammonium salts, biguanide groups, quaternary pyridinium salts, sulphonium salts, phosphonium salts, and other antibacterial groups. On the other hand, studies have been made of bacterium adsorbing macromolecules, which can remove by adsorbing bacterial cells in water. The macromolecules are the ones based on poly(4‐vinylpyridine‐co‐divinylbenzene), crosslinked poly(3‐ and 4‐chloromethylated styrene‐g‐amine), and poly(glycidyl methacrylate‐g‐amine), as well as filters and microporous membranes are covered with a macromolecule based on quaternized poly(4‐vinylpyridine‐co‐styrene). Here, a review is made of the syntheses and preparation of the respective macromolecules, as well as of their antibacterial activities and the bacterium adsorbing activities.  相似文献   

19.
Poly(vinylbenzyl chloride) (PVBC)‐grafted poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) films were prepared as precursors for ion‐exchange membranes with a radiation grafting technique. A scanning electron microscopy–energy dispersive X‐ray spectroscopy (SEM‐EDX) instrument was used to investigate the effects of the radiation grafting conditions on the distribution profiles of the grafts in the FEP‐g‐PVBC films because the properties of the ion‐exchange membranes were largely affected not only by the degree of grafting (DOG) but also by the distribution of the graft chain. These results indicate that the distribution profile of the grafts largely depended on the grafting parameters, such as the solvent, monomer concentration, film thickness, and irradiation dose. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Surface‐modified polypropylene (PP) films with thermally and photochemically sensitive copolymers consisting of N‐(2‐hydroxypropyl)methacrylamide (HPMA) and 4‐(4‐methoxyphenylazo)phenyl methacrylate (MPAP), poly(HPMA‐co‐MPAP)‐g‐PP (abbreviated g‐PP) film, were prepared by graft copolymerization with an Ar‐plasma postpolymerization technique. The surfaces of the g‐PP films were characterized by means of X‐ray photoelectron spectroscopy; the percentage grafting of poly(HPMA‐co‐MPAP) with a number‐average molecular weight of 3.28 × 104 was 7.12%, and the molar ratio of HPMA–MPAH in the copolymer was 0.75:0.25. The stimuli‐sensitive adsorption of albumin and polystyrene microspheres on the g‐PP film was also measured. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 143–148, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号