首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of interfiber distance on the interfacial properties in two dimensional multi‐E‐glass fiber/epoxy resin composites has been investigated using fragmentation test. In addition, the effect of the fiber surface treatment on the interfacial properties has been studied. We found that the interfacial shear strength decreased with the decreasing interfiber distance at the range of <50 μm and the extent of the decreasing was more serious as the increasing of the number of adjacent fiber. This is probably that the interface between the fiber and the resin was damaged by the breaking of adjacent fibers and the damage increased with minimizing the interfiber spacing and the number of adjacent fibers. We can guess that interfacial shear strength in real composites is much smaller than that of multifiber fragmentation sample with touched fiber. When the interfiber distance was >50 μm, the interfacial shear strengths were saturated regardless of fiber surface treatment and were in close agreement with those of the single fiber fragmentation test. Finally, the interfacial shear strength evaluated using two dimensional fragmentation tests are shown as real values in‐site regardless of fiber surface treatment, interfiber distance, and existing matrix cracks. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1541–1551, 2006  相似文献   

2.
利用微脱黏法测定碳纤维/环氧树脂复合材料的界面剪切强度,并分析了造成测试结果分散的影响因素.结果表明:在脱黏过程中,最大脱黏力随碳纤维埋人环氧树脂内长度的增加而线性递增,当埋人长度超过一定值后最大脱黏力趋于稳定:碳纤维与环氧树脂间的接触角对复合材料界面剪切强度有一定影响,接触角越大,界面剪切强度越高;测试结果的分散性与树脂微球的半月板区域、钳口区等因素有关;未经表面处理的碳纤维增强环氧树脂复合材料的界面剪切强度仪为39.4 MPa,低于处理后的复合材料(60.6 MPa).  相似文献   

3.
Bioresource natural sisal fiber (SF) was used to prepare single fiber‐reinforced isotactic polypropylene (iPP) composites. Three kinds of interfacial crystalline morphologies, spherulites, medium nuclei density transcrystallinity (MD‐TC) and high nuclei density transcrystallinity (HD‐TC), were obtained in the single fiber‐reinforced composites by implementing quiescent or dynamic shear‐enhanced crystallization and by modulating the compatibility interaction between SF and iPP. The development of interfacial shear strength (IFSS) during the interfacial crystallization process was demonstrated for the first time using a combination of single‐fiber fragmentation testing and optical microscope observation. A close correlation between IFSS and morphological characteristics of interfacial crystallization was well elucidated. The increases in IFSS were very different for spherulitic, MD‐TC and HD‐TC morphologies. The highest IFSS obtained was 28 MPa, after the formation of HD‐TC, which was about 62% of the tensile strength of neat iPP (45 MPa). These results offer powerful and direct evidence that interfacial crystallization could play an important role in the enhancement of interfacial adhesion of real SF/iPP composites. © 2013 Society of Chemical Industry  相似文献   

4.
环氧树脂上浆剂对PAN基碳纤维性能的影响   总被引:6,自引:0,他引:6  
分别以KD-213,YD-128环氧树脂、复合环氧树脂及油酸酰胺改性的复合环氧树脂(改性环氧树脂)为主体的上浆剂对聚丙烯腈基碳纤维(PANCF)进行上浆,对上浆纤维的加工性能、表面形貌及其界面剪切强度(IFSS)进行了研究。结果表明:上浆剂改善了PANCF的耐磨性、毛丝量、耐水性及其复合材料的IFSS。其中改性环氧树脂上浆剂为最佳,可在PANCF表面形成一层完整的柔韧性光滑薄膜,上浆后的PANCF的耐磨次数为1887,毛丝量为0.14mg,吸水率小于等于0.005%,复合材料IFSS较未上浆纤维提高38.5%,达87.26GPa。  相似文献   

5.
The bending properties of composite materials are often characterized with simply supported beams under concentrated loads. The results from such tests are commonly based on homogeneous beam equations. For laminated materials, however, these formulas must be modified to account for the stacking sequence of the individual plies. The horizontal shear test with a short‐beam specimen in three‐point bending appears suitable as a general method of evaluation for the shear properties in fiber‐reinforced composites because of its simplicity. In the experimental part of this work, the shear strength of unidirectional‐glass‐fiber‐reinforced epoxy resin composites was determined in different fiber directions with the short‐beam three‐point‐bending test. Also, the elastic constants and flexural properties of the same materials were determined from bending experiments carried out on specimens in the 0, 15, 30, 45, 60, 75, and 90° fiber directions with high span–thickness ratios. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 63–74, 2004  相似文献   

6.
The performance of thermoplastic composites is known to depend on the intrinsic properties of the two composite components, the quality of the fiber–matrix interface, and the crystalline properties of their matrix. The objective of this work is to characterize the effect of the addition of modified polypropylene (PP) and silane coupling agent on the mechanical and interfacial properties of short fiber reinforced PP composites. Differential scanning calorimetry (DSC), single fiber composite fragmentation tests (SFC), and mechanical testing are used to understand the different parameters regulating the interfacial properties of composites. No influence of the modified PP on the level of crystallinity is observed. Some differences in the size of the spherulites are observed for acrylic acid grafted PP (PP‐g‐AA). Those samples also show lower mechanical properties in spite of good interfacial interactions. Maleic anhydride grafted PP (PP‐g‐MAh) leads to better mechanical performances than PP‐g‐AA. A high MAh content PP‐g‐MAh grade with low viscosity is the best polymeric additive used in the present work. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2047–2060, 2000  相似文献   

7.
The interfacial shear strength of an ultrahigh molecular weight (UHMW) polyethylene (PE) fiber/epoxy‐resin system was greatly improved by the corona‐discharge treatment of the fiber. The UHMW PE‐fiber/epoxy‐resin composite was prepared with corona‐discharge‐treated UHMW PE fiber. The mechanical properties of the composite sheet were determined by tensile testing. The tensile strength of the composite was also very much improved. However, the tensile strength of the composite was about one‐half of the theoretical strength. This result was due to the molecular degradation of the PE‐fiber surface caused by surface modification. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1162–1168, 2001  相似文献   

8.
The effect of fiber surface pretreatment on the interfacial strength and mechanical properties of wood fiber/polypropylene (WF/PP) composites are investigated. The results demonstrate that fiber surface conditions significantly influence the fiber–matrix interfacial bond, which, in turn, determines the mechanical properties of the composites. The WF/PP composite containing fibers pretreated with an acid–silane aqueous solution exhibits the highest tensile properties among the materials studied. This observation is a direct result of the strong interfacial bond caused by the acid/water condition used in the fiber pretreatment. Evidence from coupling chemistry, rheological and electron microscopic studies support the above conclusion. When SEBS‐g‐MA copolymer is used, a synergistic toughening effect between the wood fiber and the copolymer is observed. The V‐notch Charpy impact strength of the WF/PP/SEBS‐g‐MA composite is substantially higher than that of the WF/PP composite. The synergistic toughening mechanisms are discussed with respect to the interfacial bond strength, fiber‐matrix debonding, and matrix plastic deformation. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1000–1010, 2000  相似文献   

9.
Interfacial adhesion between carbon fiber and epoxy resin plays an important role in determining performance of carbon–epoxy composites. The objective of this research is to determine the effect of fiber surface treatment (oxidization in air) on the mechanical properties (flexural strength and modulus, shear and impact strengths) of three‐dimensionally (3D) braided carbon‐fiber‐reinforced epoxy (C3D/EP) composites. Carbon fibers were air‐treated under various conditions to improve fiber–matrix adhesion. It is found that excessive oxidation will cause formation of micropits. These micropits are preferably formed in crevices of fiber surfaces. The micropits formed on fiber surfaces produce strengthened fiber–matrix bond, but cause great loss of fiber strength and is probably harmful to the overall performance of the corresponding composites. A trade‐off between the fiber–matrix bond and fiber strength loss should be considered. The effectiveness of fiber surface treatment on performance improvement of the C3D/EP composites was compared with that of the unidirectional carbon fiber–epoxy composites. In addition, the effects of fiber volume fraction (Vf) and braiding angle on relative performance improvements were determined. Results reveal obvious effects of Vf and braiding angle. A mechanism was proposed to explain the experimental phenomena. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1040–1046, 2002  相似文献   

10.
Epoxy composites filled with glass fiber and organo‐montmorillonite (OMMT) were prepared by the hand lay‐up method. The flexural properties of the epoxy/glass fiber/OMMT composites were characterized by a three‐point bending test. The flexural modulus and strength of epoxy/glass fiber were increased significantly in the presence of OMMT. The optimum loading of OMMT in the epoxy/glass fiber composites was attained at 3 wt%, where the improvement in flexural modulus and strength was approximately 66 and 95%, respectively. The fractured surface morphology of the epoxy/glass fiber/OMMT composites was investigated using field emission scanning electron microscopy. It was found that OMMT adheres on the epoxy/glass fiber interface, and this is also supported by evidence from energy dispersive X‐ray analysis. Copyright © 2007 Society of Chemical Industry  相似文献   

11.
Several types of functionalized polyolefins, grafted with maleic anhydride, were synthesized and used to modify the surface of fiberglass in reinforced polypropylene composites. The influence of maleated polyolefin, matrix, and compounding conditions on the interfacial bonding strength of composite were studied by measuring interfacial shear strength. The results showed that strong interactions, e.g., chemical bonding, were formed between maleated polyolefin and fiber surface. When the modified fibers were compounded with polypropylene, firm entanglements of molecular chain were formed due to the segmental interdiffusion between maleated polyolefin and matrix polypropylene. As a result, the degree of fiber‐matrix adhesion was improved. The extent of such improvement depended on the grafting degree, chain length of maleated polyolefin, and the compatibility between maleated polyolefin and matrix resin. At the same time, the compounding temperature and the cooling procedure affected the interfacial adhesion too. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 1359–1365, 2000  相似文献   

12.
Poly(styrene‐co‐acylonitrile) was used to modify diglycedyl ether of bisphenol‐A type epoxy resin cured with diamino diphenyl sulfone and the modified epoxy resin was used as the matrix for fiber‐reinforced composites (FRPs) to get improved mechanical properties. E‐glass fiber was used as fiber reinforcement. The tensile, flexural, and impact properties of the blends and composites were investigated. The blends exhibited considerable improvement in mechanical properties. The scanning electron micrographs of the fractured surfaces of the blends and tensile fractured surfaces of the composites were also analyzed. The micrographs showed the influence of morphology on the properties of blends. Results showed that the mechanical properties of glass FRPs increased gradually upon fiber loading. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
耐高温高导热环氧树脂/玻纤/BN复合材料的制备   总被引:1,自引:0,他引:1  
以4,4-二氨基二苯砜(DDS)和内亚甲基四氢邻苯二甲酸酐(NA)为复配固化剂,采用高温模压成型法制备耐高温高导热环氧树脂/玻纤/氮化硼(BN)复合材料。探讨了BN用量和偶联剂处理对复合材料冲击强度、导热性能和电阻率的影响。结果表明:当nDDS:nNA=3:1时,复合材料的耐热性能最佳。当BN质量分数为8%时,复合材料的冲击强度最高;导热性能随BN用量的增加而增加,当BN用量为15%时,热导率为0.7560W/(mk),此时复合材料仍保持较高的体积、表面电阻率;当BN填充量为一定值时,偶联剂处理使冲击强度和导热性能得到进一步提高。  相似文献   

14.
Novel epoxy (EP) composite reinforced with three‐dimensional (3D) polyimide (PI) fiber felt (PI3D/EP) is first fabricated by vacuum assisted resin transfer molding. The tribological behaviors of pure EP and PI3D/EP composite under dry sliding and water lubricated condition are comparatively studied. Results indicate that both wear rates and friction coefficients of PI3D/EP composite are lower than those of pure EP. The wear resistance of PI3D/EP composite is 9.8 times higher than that of pure EP under dry sliding of 1.5 MPa and 0.76 m s?1 while a 27‐fold increase is achieved under water lubricated condition. The wear mechanisms of PI3D/EP composite are investigated based on tribological testing results and scanning electron microscopy observations. The PI fiber felt provides strong 3D structure supports to sustain most of the loads on the composite, improving the mechanical and tribological properties significantly. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44160.  相似文献   

15.
Adhesion at the fiber‐matrix interface of a composite is often influenced by a combination of factors such as mechanical interlocking, physicochemical interactions, and chemical bonding in the fiber‐matrix interphase region. We demonstrate the use of an approach using self‐assembled monolayers (SAMs) for studying the impact of one of the factors, chemical bonding, on the overall adhesion of the glass‐fiber/matrix interface. Transformation of these monolayer surfaces using conventional chemistry with a focus on the creation of a terminal functional group that interacts with epoxy resin is reported. The modified surfaces were characterized by ellipsometry, X‐ray photoelectron spectroscopy, and contact angle techniques for chlorosilane coverage, and in situ conversion. The adhesion of diglycidyl ether of bisphenol‐A resin to modified SAMs on E‐glass fibers was measured by performing single‐fiber fragmentation test. The extent of adhesion between the fiber and matrix was found to be dependent on the type of functional group at the terminal end of the SAM in contact with the epoxy matrix. Methyl terminal group resulted in the least adhesion, while amine terminal groups resulted in the most adhesion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
改性空心玻璃微珠/环氧树脂复合材料力学性能研究   总被引:3,自引:2,他引:3  
采用偶联剂对玻璃微珠表面进行改性处理,借助超声波振动,使改性空心玻璃微珠在环氧树脂中均匀、稳定分散,增强了玻璃微珠与环氧树脂之间的相容并探讨了改性空心玻璃微珠对环氧树脂力学性能的影响。结果表明,复合材料中改性空心玻璃微珠添加质量分数为3%时,其拉伸强度达到最大值68.54 MPa,与空白样相比提高了20.3%;冲击强度达到最大值24.42 kJ/m2,比纯环氧树脂提高了166%;KIC(断裂韧性)达到最大值2.338 MPa/m2,是空白试样的2.27倍,增韧效果较为明显。  相似文献   

17.
—Glass fiber/unsaturated polyester composites, prepared by impregnating glass braid with varying thickness coatings (from 200 Å up to 1600 Å thick) of polyester resin, were tested with a DuPont Dynamic Mechanical Analyzer. The effects of the polyester resin thickness and silane treatments on the dynamic mechanical properties of the composites were evaluated. The results are supported by Fourier transform infrared spectroscopy of the composite materials. It is shown that both the concentration and the organo-functional group of the silane coupling agent influence the damping, storage, and loss moduli as well as the glass transition temperature (Tg) of the matrix resin in the closest vicinity to the glass/resin bondline. In the absence of a silane inner layer, a low Tg, 'soft' boundary layer exists due to inhibition of the polyester resin cure by the glass surface. It is noted that a reactive silane, such as γ-methacryloxypropyltrimethoxysilane, promotes the formation of a 'soft' or 'rigid' (high Tg) boundary layer, depending on the concentration of the silane in the treating solution. On the other hand, a non-reactive silane, such as methyltrimethoxysilane, produces a 'rigid' interphase in the entire range of concentrations of the silane solution. An attempt was made to correlate the dynamic mechanical properties of the boundary layer with the fiber/polymer interfacial shear strength. Upon pretreatment of glass fibers with silane coupling agents, the relative magnitude of the loss modulus, E", and the nature of the boundary layer (Tg) seem to be better indicators of efficient stress transfer from the polymer to the glass fiber in the composite system than tan δ. Efficient stress transfer is characterized by a low value of E" and 'soft' boundary layers. The results suggest that the mere presence of glass/polyester chemical bonding is insufficient to ensure effective stress transfer. A strong bond results from the synergistic effect of glass/silane/polymer chemical bonding and a 'soft' boundary layer.  相似文献   

18.
In this study, a new method to form resin droplets on fibers has been developed, and samples for the single fiber pull-out test were prepared using this method. The effects of microstructure of polypropylene (PP) resin and the microstructure of interface between the glass fiber and PP resin on the interfacial strength have been investigated. In addition, the influence of the microstructure of the interface on the interfacial strength of glass fiberreinforced PP composites have been discussed. It has been found that in the pull-out test, the transcrystallinity formed at the interface between the glass fiber and PP resin improved the interfacial strength when no spherulites developed in the PP matrix. On the other hand, it has been found that when the spherulites were well developed in the PP matrix, the transcrystallinity formed at the interface reduced the interfacial strength. Finally, rapid cooling has been shown to improve the interfacial strength between the fiber and resin in the crystalline polymer matrix composites. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
A modified resin was synthesized through the reaction between dodecylamine and tetraglycidyldiaminodiphenylmethane (TGDDM), which was used as the film former of sizing agent for carbon fiber (CF). The sizing agents were prepared through phase inversion emulsification method. Fourier transform infrared spectroscopy (FTIR) was utilized to analyze the modified resin. Particle sizes of the sizing agents were tested to evaluate their stabilities. Differential scanning calorimetry (DSC) results demonstrated that the glass transition temperature (Tg) of the modified TGDDM is much higher than the Tg of the cured epoxy resin E‐44. The influences of the sizing treatment on CF were investigated by abrasion resistance, fluffs, and stiffness tests. The maximum abrasion resistance increased by 172.8%, compared with the abrasion resistance of the desized CF. Interlaminar shear strength (ILSS) results of the CF/TGDDM composites indicated that the interfacial adhesion between CF and matrix resin was greatly improved after CF was sized. The maximum ILSS value could obtain a 29.16% improvement, compared with the ILSS of the desized CF composite. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41882.  相似文献   

20.
5231环氧树脂体系/玻璃布复合材料性能研究   总被引:4,自引:1,他引:3  
一种160℃固化的改性环氧树脂体系5231,该树脂体系粘性适中,具有良好的阻燃性和较高的抗滚筒剥离强度,其预浸料可与Nomex芳纶纸蜂窝直接共固化。另外,其玻璃布复合材料力学性能满足了技术指标要求,耐热性和耐湿热性良好,并已在飞机的结构件上得到应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号