首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
将结构相似度引入到稀疏编码模型中,提出基于结构相似度的稀疏编码模型。基于该模型提取出图像的稀疏编码特征。实验结果表明,改进后的稀疏编码模型更好地保持了结构信息,更加符合人眼视觉系统特性。将文中提出的模型应用到特征提取中,可获得结构信息保持得更好的图像特征。  相似文献   

2.
目的 为了有效提高高光谱图像分类的精度,提出了双重L2稀疏编码的高光谱图像分类方法。方法 首先对高光谱图像进行预处理,充分结合图像的空间信息和光谱信息,利用像元的空间连续性,用L2稀疏编码重建图像中每个像元。针对重建的图像数据,依据L2稀疏编码的最小误差和编码系数实现分类。结果 在公开的数据库AVIRIS高光谱图像上进行验证,分类精度为99.44%,与支持向量机(SVM)、K最近邻(KNN)和L1稀疏编码方法比较,有效地提高了分类的准确性。结论 实验结果表明,提出的方法应用于高光谱图像分类具有较好的分类效果。  相似文献   

3.
钱康  霍宏  方涛 《计算机工程》2012,38(13):1-4
在分析视皮层标准模型的基础上,从S2层的生物视觉机理出发,提出一种结合稀疏编码的生物视觉特征提取方法。对原始标准模型中C1层的输出进行稀疏编码,生成S2层的特征,并在此基础上产生C2特征。将标准模型产生的特征和该方法提取的特征应用于图像分类中进行对比实验,实验结果表明,与标准模型相比,该方法可以更有效地提取生物视觉特征。  相似文献   

4.
鉴于传统属性选择算法无法捕捉属性之间的关系的问题,文中提出了一种非线性属性选择方法。该方法通过引入核函数,将原始数据集投影到高维的核空间,因在核空间内进行运算,进而可以考虑到数据属性之间的关系。由于核函数自身的优越性,即使数据通过高斯核投影到无穷维的空间中,计算复杂度亦可以控制得较小。在正则化因子的限制上,使用两种范数进行双重约束,不仅提高了算法的准确率,而且使得算法实验结果的方差仅为0.74,远小于其他同类对比算法,且算法更加稳定。在8个常用的数据集上将所提算法与6个同类算法进行比较,并用SVM分类器来测试分类准确率,最终该算法得到最少1.84%,最高3.27%,平均2.75%的提升。  相似文献   

5.
李钱钱  曹国 《计算机工程》2013,(11):240-244
针对复杂背景下的图像分类问题,结合非负稀疏编码和局部保持投影算法,提出一种拉普拉斯正则化非负稀疏编码算法。相比于已有的稀疏编码算法,该算法不仅能更好地模拟哺乳动物初级视觉系统主视皮层V1区简单细胞感受野的行为,同时也可使相似的特征经过编码后仍然相似,从而保证特征度量的一致性。将该算法与空间金字塔匹配模型相结合应用于图像分类,在多个图像数据库上的实验结果表明,该算法具有较高的分类精度。  相似文献   

6.
基于预测稀疏编码的快速单幅图像超分辨率重建   总被引:1,自引:0,他引:1  
沈辉  袁晓彤  刘青山 《计算机应用》2015,35(6):1749-1752
针对经典的基于稀疏编码的图像超分辨率算法在重建过程中运算量大、计算效率低的缺点,提出一种基于预测稀疏编码的单幅图像超分辨率重建算法。训练阶段,该算法在传统的稀疏编码误差函数基础上叠加编码预测误差项构造目标函数,并采用交替优化过程最小化该目标函数;测试阶段,仅需将输入的低分辨图像块和预先训练得到的低分辨率字典相乘就能预测出重建系数,从而避免了求解稀疏回归问题。实验结果表明,与经典的基于稀疏编码的单幅图像超分辨率算法相比,该算法能够在显著减少重建阶段运算时间的同时几乎完全保留超分辨率视觉效果。  相似文献   

7.
徐佳庆  万文  吕启 《计算机科学》2018,45(9):288-293
高光谱遥感技术是当前遥感领域的前沿技术,将稀疏编码应用于高光谱遥感图像处理是近年来高光谱信息处理的一个热点研究方向。以提升高光谱遥感图像分类准确度为目标,提出一种基于二阶矩空谱联合稀疏编码的遥感图像分类方法。首先从各地物参考数据中选取训练样本,通过学习构造得到字典,然后在训练得到的字典的基础上通过稀疏编码获得每个像元的稀疏系数,之后将稀疏系数作为分类器的输入,通过分类器的分类判决得到最终的分类结果。利用北京市朝阳地区的天宫一号可见近红外高光谱遥感图像数据和KSC高光谱数据,将该方法与支持向量机(SVM)、基于光谱维信息的稀疏编码以及一阶矩空谱联合稀疏编码等方法进行了比较。实验结果表明,提出的分类方法较其他几种方法可以取得更好的分类效果,在天宫一号和KSC数据上的总体分类精度分别可达到95.74%和96.84%,Kappa系数分别可达到0.9476和0.9646。  相似文献   

8.
在稀疏词袋模型中,由于码书的过完备性,相似特征间稀疏编码存在多种组合方式,从而导致相似的特征可能得到完全不同的编码.文中提出基于核拉普拉斯稀疏编码的图像分类方法.该方法首先通过在高维核空间中构造核拉普拉斯矩阵以描述特征间的几何依赖关系,使相似特征的稀疏编码的相似性尽可能得到保持.再采用交替固定码书与稀疏矩阵的方法优化目标函数进行码书学习,并采用符号猜测法对特征进行稀疏编码.最后用多类SVM分类器分类.实验证明文中方法可较大幅度降低量化误差,提高分类准确率,并在多个数据集上取得良好的测试效果.  相似文献   

9.
10.
图像基学习是图像特征提取与表示的重要方法之一。非负稀疏编码不仅具有标准稀疏编码算法的自适应性、空间的局部性、方向性和频域的带通性,而且更能反应哺乳动物的视觉机制。本文在非负稀疏编码的基础上,利用经验模态分解技术加入了图像的结构信息,提出了结合经验模态分解的非负稀疏编码算法,保证了系数矩阵的稀疏性与所提取图像特征的结构性。学习得到的图像基不仅具有非负稀疏编码的特征,而且更好地表示出图像的结构信息。  相似文献   

11.
为解决高维数据在分类时造成的“维数灾难”问题,提出一种新的将核函数与稀疏学习相结合的属性选择算法。具体地,首先将每一维属性利用核函数映射到核空间,在此高维核空间上执行线性属性选择,从而实现低维空间上的非线性属性选择;其次,对映射到核空间上的属性进行稀疏重构,得到原始数据集的一种稀疏表达方式;接着利用L 1范数构建属性评分选择机制,选出最优属性子集;最后,将属性选择后的数据用于分类实验。在公开数据集上的实验结果表明,该算法能够较好地实现属性选择,与对比算法相比分类准确率提高了约3%。  相似文献   

12.
13.
针对传统稀疏编码图像分类算法提取单一类型特征,忽略图像的空间结构信息,特征编码时无法充分利用特征拓扑结构信息的问题,提出了基于多尺度特征融合Hessian稀疏编码的图像分类算法(HSC)。首先,对图像进行空间金字塔多尺度划分;其次,在各个子空间层将方向梯度直方图(HOG)和尺度不变特征转换(SIFT)进行有效的融合;然后,为了充分利用特征的拓扑结构信息,在传统稀疏编码目标函数中引入二阶Hessian能量函数作为正则项;最后,利用支持向量机(SVM)进行分类。在Scene15数据集上的实验结果表明,HSC的准确率比局部约束线性编码(LLC)高了3~5个百分点,比支持区别性字典学习(SDDL)等对比方法高了1~3个百分点;在Caltech101数据集上的耗时实验结果表明,HSC的用时比多核学习稀疏编码(MKLSC)少40%左右。所提HSC可以有效提高图像分类准确率,算法的效率也优于对比算法。  相似文献   

14.
目的 传统以先验知识为基础的去雾算法,如最大化饱和度、暗通道等,在某些特定场景下效果非常不稳定,会出现色彩扭曲和光晕等现象。由于标注好的训练数据严重不足、特征的冗余性等原因,传统基于学习的去雾算法容易导致模型过拟合。为克服这些问题,本文提出一种基于两阶段特征提取的场景透射率回归去雾方法。方法 在第1阶段,提取图像在颜色空间上的饱和度、最小通道、最大通道以及灰度图的盖博响应等43维特征作为初始雾的特征,并在提取的特征图像局部窗口内,进一步提取最小值、最大值、均值、方差、偏度、峰度、高斯均值等7维特征。在第2阶段,将提取的43×7=301个维度特征组成表征雾的二阶段特征向量。最后采用支持向量机进行训练,得到雾的特征向量和场景透射率的回归模型。结果 实验结果表明,本文算法取得了非常好的去雾效果。平均梯度值为4.475,高于所有对比算法;峰值信噪比为18.150 dB,仅次于多尺度卷积神经网络去雾算法;结构相似性为0.867,处于较高水平;去雾后的亮度和对比度,也均排于前列。本文算法的去雾测试性能接近甚至超过了已有的基于深度学习的去雾算法,表明本文提出的两阶段特征能够很好地对雾进行表征,实现了小样本学习的高效去雾。结论 本文通过两阶段的特征提取策略,极大提升了算法的鲁棒性,仅需要极少量样本就能训练得到性能很好的去雾模型,具有很好的泛化性能。  相似文献   

15.
针对现有行为特征提取方法识别率低的问题,提出了一种融合稠密光流轨迹和稀疏编码框架的无监督行为特征提取方法(DOF-SC)。首先,在稠密光流(DOF)轨迹提取的基础上,对以轨迹为中心的原始图像块进行采样作为轨迹的原始特征;其次,对轨迹原始特征基于稀疏编码框架训练稀疏字典,得到轨迹的稀疏特征表示,利用词袋(BF)模型对稀疏特征聚类得到轨迹的码书,再根据码书对每个动作中出现的所有轨迹所属的码书类别进行投票,统计该动作中每个码书出现的次数,得到行为特征;最后,对行为特征利用基于直方图交叉核函数的支持向量机(SVM)进行训练得到行为识别模型,再利用该模型对行为进行分类预测,得到最终行为识别的结果。在对轨迹采样10%的情况下,DOF-SC算法得到的行为识别准确率在KTH数据库上高出采用运动边界直方图(MBH)作为特征的行为识别准确率的0.9%,在YouTube数据库上高出MBH作为特征的行为识别准确率的1.2%。实验数据表明了所提方法对行为识别的有效性。  相似文献   

16.
特征选择旨在降低待处理数据的维度,剔除冗余特征,是机器学习领域的关键问题之一。现有的半监督特征选择方法一般借助图模型提取数据集的聚类结构,但其所提取的聚类结构缺乏清晰的边界,影响了特征选择的效果。为此,提出一种基于稀疏图表示的半监督特征选择方法,构建了聚类结构和特征选择的联合学习模型,采用l__1范数约束图模型以得到清晰的聚类结构,并引入l_2,1范数以避免噪声的干扰并提高特征选择的准确度。为了验证本方法的有效性,选择了目前流行的几种特征方法进行对比分析,实验结果表明了本方法的有效性。  相似文献   

17.
经典的特征点提取算法是从整个图像进行遍历来确定特征点,运算量较大,不能满足实时应用的要求。提出了一种特征点快速稀疏提取算法,该方法首先利用高斯拉普拉斯算子(Laplacian of Gaussian,LoG)提取图像梯度,设定阈值过滤获得图像的边缘稀疏矩阵,然后在稀疏矩阵的基础上利用改进的加速分割测试特征(Features from Accelerated Segment Test,FAST)检测算法,解决了传统匹配算法提取特征点耗时的问题,使图像实时匹配成为可能。为减少误匹配对,利用感知哈希算法对匹配对进行提纯,并根据仿射不变性建立两个约束条件进一步验证单应性矩阵,提高配准精度。实验结果证明,该算法提高了特征点提取的速度以及配准精度。  相似文献   

18.
为了获得更好的文本分类准确率和更快的执行效率, 研究了多种Web文本的特征提取方法, 通过对互信息(MI)、文档频率(DF)、信息增益(IG)和χ2统计(CHI)算法的研究, 利用其各自的优势互补, 提出一种基于主成分分析(PCA)的多重组合特征提取算法(PCA-CFEA)。通过PCA算法的正交变换快速地将文本特征空间降维, 再通过多重组合特征提取算法在降维后的特征空间中快速提取出更具代表性的特征项, 过滤掉一些代表性较弱的特征项, 最后使用SVM分类器对文本进行分类。实验结果表明, PCA-CFEA能有效地提高文本分类的正确率和执行效率。  相似文献   

19.
针对传统基于稀疏字典对的超分辨率(SR)算法训练速度慢、字典质量差、特征匹配准确性低的缺点,提出一种基于改进稀疏编码的图像超分辨率算法。该算法使用自适应阈值的形态组成分析(MCA)方法提取图像特征,并采用主成分分析算法对训练集进行降维,提高特征提取的有效性,缩短字典训练时间,减少过拟合现象。在字典训练阶段,使用改进的稀疏K-奇异值分解(K-SVD)算法训练低分辨率字典,结合图像块的重叠关系求解高分辨率字典,增强字典的有效性和自适应能力,同时极大地提高了字典的训练速度。在Lab颜色空间对彩色图像进行重建,避免由于颜色通道相关性造成的重建图像质量下降。与传统方法相比,该算法重建图像质量和计算效率更优。  相似文献   

20.
基于文化粒子群算法的KPCA特征提取   总被引:1,自引:1,他引:0  
如何选择最优或接近最优的核函数使分类错误率降低,是KPCA应用于特征提取的关键。为了优化核 函数,提高特征提取的能力并降低分类错误率,在研究了文化算法(cultural algorithm, CA)、粒子群优化(particle swarm optimization, PSO)相关文献的基础上,提出了一种文化粒子群算法(cultural based PSO, CBPSO)流程,并 将此算法用于训练核函数参数,实现了KPCA和CBPSO的集成,有效地提高了核函数的优化选择。通过比较 CBPSO-KP  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号