首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A simple and effective process has been proposed to prepare chitosan/magnetite nanocomposite beads with saturation magnetization value as high as uncoated Fe3O4 nanoparticles (ca. 54 emu/g). The reason was that the coating chitosan layer was so thin that it did not affect magnetic properties of these composite beads. Especially, chitosan on the surface of the magnetic Fe3O4 nanoparticles is available for coordinating with heavy metal ions, making those ions removed with the assistance of external magnets. Maximum adsorption capacities for Pb(II) and Ni(II), occurred at pH 6 and under room temperature were as high as 63.33 and 52.55 mg/g respectively, according to Langmuir isotherm model. These results permitted to conclude that chitosan/magnetite nanocomposite beads could serve as a promising adsorbent not only for Pb(II) and Ni(II) (pH = 4–6) but also for other heavy metal ions in wastewater treatment technology.  相似文献   

2.
Titanium dioxide nanocrystals were employed, for the first time, for the sorption of Hg(II) ions from aqueous solutions. The effects of varying parameters such as pH, temperature, initial metal concentration, and contact time on the adsorption process were examined. Adsorption equilibrium was established in 420 min and the maximum adsorption of Hg(II) on the TiO2 was observed to occur at pH 8.0. The adsorption data correlated with Freundlich, Langmuir, Dubinin–Radushkevich (D–R), and Temkin isotherms. The Freundlich isotherm showed the best fit to the equilibrium data. The Pseudo-first order and pseudo-second-order kinetic models were studied to analyze the kinetic data. A second-order kinetic model fit the data with the (k2 = 2.8126 × 10?3 g mg?1min?1, 303 K). The intraparticle diffusion models were applied to ascertain the rate-controlling step. The thermodynamic parameters (ΔG°, ΔH°, and ΔS°) were calculated which showed an endothermic adsorption process. The equilibrium parameter (RL) indicated that TiO2 nanocrystals are useful for Hg(II) removal from aqueous solutions.  相似文献   

3.
Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) functionalization of rice husk-based activated carbon was prepared and its application in the removal of copper ions was investigated. The structural properties of the resulting composite material were characterized by means of N2 adsorption/desorption, Fourier transform infrared (FT-IR) and thermogravimetric analysis (TGA). The obtained composite is observed to hold a relatively large pore diameter of 3.8 nm and high surface area of 789 m2 g?1 with 12 wt% of PDMAEMA coated, which is significant for its use as adsorbent. The ability of the composite material for removing Cu2+ from aqueous solution was studied by batch experiments. The adsorption data obeyed the Langmuir isotherms, which revealed that 1 g of the prepared material could adsorb 31.46 mg of Cu2+ from its aqueous solution. The PDMAEMA functionalized activated carbon is expected to be used as an efficient adsorbent for removing other heavy metal ions and dyes in water.  相似文献   

4.
Chitosan microspheres cross-linked with glutaraldehyde and containing the reactive dye Orange 16 (RO 16) as a chelating agent were obtained by spray drying technique. These microspheres (CHS-RO 16) were characterized by FTIR, TGA, DSC, SEM and EDX analyses, and tested for metal adsorption. The new adsorbent was used in batch experiments to evaluate the adsorption of Cu(II) and Cd(II) ions in single and binary metal solutions. In single metal solutions, the maximum adsorption capacity for Cu(II), obtained by Langmuir model, was close to 1.69 mmol Cu g? 1; this means the double of the adsorption capacity for Cd(II) (i.e. 0.80 mmol Cd g? 1). Adsorption isotherms for binary solutions showed that the presence of Cu(II) decreased Cd(II) adsorption due to a significant competition effect. On the other hand, Cu(II) adsorption hardly changed when the initial concentration of Cd(II) increased: the new adsorbent was selective to Cu(II) against Cd(II). The metal ions were efficiently desorbed from chitosan-RO 16 with aqueous solutions of H2SO4.  相似文献   

5.
Poly(hydroxyethyl methacrylate) (PHEMA) nanobeads with an average size of 300 nm in diameter and with a polydispersity index of 1.156 were produced by a surfactant free emulsion polymerization. Specific surface area of the PHEMA nanobeads was found to be 996 m2/g. Imidazole containing 3-(2-imidazoline-1-yl)propyl(triethoxysilane) (IMEO) was used as a metal-chelating ligand. IMEO was covalently attached to the nanobeads. PHEMA-IMEO nanobeads were used for the removal of copper(II) ions from aqueous solutions. To evaluate the degree of IMEO loading, the PHEMA nanobeads were subjected to Si analysis by using flame atomizer atomic absorption spectrometer and it was estimated as 973 µmol IMEO/g of polymer. The PHEMA nanobeads were characterized by transmission electron microscopy and fourier transform infrared spectroscopy. Adsorption equilibrium was achieved in about 8 min. The adsorption of Cu2+ ions onto the PHEMA nanobeads was negligible (0.2 mg/g). The IMEO attachment into the PHEMA nanobeads significantly increased the Cu2+ adsorption capacity (58 mg/g). Adsorption capacity of the PHEMA-IMEO nanobeads increased significantly with increasing concentration. The adsorption of Cu2+ ions increased with increasing pH and reached a plateau value at around pH 5.0. Competitive heavy metal adsorption from aqueous solutions containing Cu+, Cd2+, Pb2+ and Hg2+ was also investigated. The adsorption capacities are 61.4 mg/g (966.9 µmol/g) for Cu2+; 180.5 mg/g (899.8 µmol/g) for Hg2+; 34.9 mg/g (310.5 µmol/g) for Cd2+ and 14.3 mg/g (69 µmol/g) for Pb2+. The affinity order in molar basis is observed as Cu2+ > Hg2+ > Cd2+ > Pb2+. These results may be considered as an indication of higher specificity of the PHEMA-IMEO nanobeads for the Cu2+ comparing to other ions. Consecutive adsorption and elution operations showed the feasibility of repeated use for PHEMA-IMEO nanobeads.  相似文献   

6.
Surface modification agents can be used to tailor the surface chemistry and biological activity of bioceramic nanoparticles in very intriguing ways. However, the specific modes of interactions between macromolecules and nanoparticles can be difficult to characterize. The aim of this study was to investigate the adsorption of gum Arabic on hydroxyapatite (HAp) and magnetic nanoparticles (MNP) using the bicinchoninic acid (BCA) test. Gum Arabic (GA) is a natural gum that has been widely used as an emulsifying agent and shows promise for dispersing nanoparticles in aqueous solutions. The adsorption of GA onto HAp nanoparticles followed a Langmuir isotherm with an adsorption plateau occurring at 0.2 g GA/g HAp. The adsorption of GA onto MNP attained a maximum value of 0.6 g GA/g MNP, after which it decreased to approximately 0.2 g GA/g MNP. The maximum adsorption density of GA on both MNP and HAp is equivalent when normalized to the specific surface area (4 × 10 3 g GA/m2). Adsorbed GA molecules were displaced from the surface of HAp and MNP in the presence of phosphate ions.  相似文献   

7.
For obtaining the technical data to evaluate the performance of hydrogen storage by adsorption on graphene sheets (GS), analysis of adsorption equilibrium of hydrogen on the GS and the activated carbon were carried out based on the hydrogen adsorption data covering a wide temperature range. The GS and SAC-02 activated carbon, which respectively had a specific surface area about 300 m2/g and 2074 m2/g, were selected as adsorbents. Six adsorption isotherms of excess amounts of high purity hydrogen were measured at temperature from 77.15 K to 293.15 K and pressure up to 6 MPa. Parameters of Langmuir, Langmuir–Freundlich and Toth equations were set by non-linear fit against adsorption data, predicting accuracy of the equations was then evaluated by the accumulated relative errors between experimental data and those from the equations under different pressure regions. Absolute adsorption amounts determined by the modified equation were used to calculate the isosteric heat of adsorption.It shows that both adsorption isotherms of hydrogen on the GS and the activated carbon have the features of Type I, but the trend of isotherms varying over the pressure is different within the lower temperature region. Results from Langmuir equation have the largest error. Toth equation can much accurately predict the adsorption data with an overall accumulated relative error less than 4%. The value of the isosteric heat of hydrogen adsorption on the GS is about 5.06–6.37 kJ/mol, which is much higher than 4.05–5.52 kJ/mol for hydrogen on the SAC-02 activated carbon under the whole experimental condition. It reveals that interaction between hydrogen molecules and the graphene layer is stronger than that of hydrogen and carbon surface, and Toth equation could be appropriate to analyzing adsorption equilibrium for hydrogen on carbon based adsorbents.  相似文献   

8.
Novel nanospheres with an average size of 350 nm utilizing N-methacryloyl-(l)-tryptophane methyl ester (MATrp) as a hydrophobic monomer were prepared by surfactant free emulsion polymerization of 2-hydroxyethyl methacrylate (HEMA), (MATrp) conducted in an aqueous dispersion medium. MATrp was synthesized using methacryloyl chloride and (l)-tryptophane methyl ester. Specific surface area of the non-porous nanospheres was found to be 1902.3 m2/g. poly(HEMA–MATrp) nanospheres were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM). Average particle size and size distribution measurements were also performed. Elemental analysis of MATrp for nitrogen was estimated at 1.36 mmol/g nanospheres. Then, poly(HEMA–MATrp) nanospheres were used in the adsorption of porcine pancreas lipase in a batch system. Using an optimized adsorption protocol, a very high loading of 558 mg enzyme/g nanospheres was obtained. The adsorption phenomena appeared to follow a typical Langmuir isotherm. The Km value for immobilized lipase (16.26 mM) was higher than that of free enzyme (10.34 mM). It was observed that enzyme could be repeatedly adsorbed and desorbed without significant loss in adsorption amount or enzyme activity. These findings show considerable promise for this material as an adsorption matrix in industrial processes.  相似文献   

9.
《Materials Research Bulletin》2013,48(11):4856-4866
Aluminum pillared montmorillonites (Alpill-MMTs) were prepared by two different methods, i.e. conventional intercalation and ultrasonic assisted intercalation, in order to study the effects of preparation methods on their structures and adsorption abilities. In the conventional intercalation, a base-hydrolyzed solution of [AlO4Al12(OH)24(OH2)12]7+, Al137+, was firstly prepared and then mixed with a suspension of sodium montmorillonite (Na+-MMT) for 24 h with vigorous stirring, resulting in the cation exchange between Al137+ and Na+ balancing ions in the MMT interlayers. On the other hand, the high power ultrasonic was used in the second method for creating the Al137+ ions and then in situ intercalating into the MMT suspension, in which the reaction was performed for 20 min. Both Al137+ intercalated MMTs were calcined at 500 °C for 2 h in order to obtain the Alpill-MMTs. The ultrasonic could not only shortening the intercalation process, but also increasing the amount of intercalated Al137+ in the MMT. The ultrasonic synthesized Alpill-MMT (Alpill-MMT-ultra) consisted of mesoporous structure with multiple pore sizes ranging from 3 to 30 nm; therefore, it possessed higher specific surface area and pore volume than the conventionally synthesized Alpill-MMT (Alpill-MMT-str). Adsorption capacities of Alpill-MMTs were investigated using cationic adsorbate, i.e. Basic Yellow 1 (BY1). The highest adsorption capacities were respectively about 95 and 81 mg/g for the Alpill-MMT-ultra and Alpill-MMT-str, when using initial BY1 concentration of 2000 mg/L. The Alpill-MMT-ultra showed higher efficiency for BY1 removal than the Alpill-MMT-str even after thermal regeneration. The adsorption kinetics of both Alpill-MMTs for BY1 removals were found to follow a pseudo-second-order model, while their adsorption data corresponded to Langmuir isotherm. These results indicated the competency of Alpill-MMTs as the adsorbents for treatment of wastewater containing cationic dye.  相似文献   

10.
Biosorption of Pb(II) on bael leaves (Aegle marmelos) was investigated for the removal of Pb(II) from aqueous solution using different doses of adsorbent, initial pH, and contact time. The maximum Pb loading capacity of the bael leaves was 104 mg g?1 at 50 mg L?1 initial Pb(II) concentration at pH 5.1. SEM and FT-IR studies indicated that the adsorption of Pb(II) occurs inside the wall of the hollow tubes present in the bael leaves and carboxylic acid, thioester and sulphonamide groups are involved in the process. The sorption process was best described by pseudo second order kinetics. Among Freundlich and Langmuir isotherms, the latter had a better fit with the experimental data. The activation energy Ea confirmed that the nature of adsorption was physisorption. Bael leaves can selectively remove Pb(II) in the presence of other metal ions. This was demonstrated by removing Pb from the effluent of exhausted batteries.  相似文献   

11.
A simple method was introduced to prepare magnetic chitosan nanoparticles by co-precipitation via epichlorohydrin cross-linking reaction. The average size of magnetic chitosan nanoparticles is estimated at ca. 30 nm. It was found that the adsorption of Cr(VI) was highly pH-dependent and its kinetics follows the pseudo-second-order model. Maximum adsorption capacity (at pH 3, room temperature) was calculated as 55.80 mg·g? 1, according to Langmuir isotherm model. The nanoparticles were thoroughly characterized before and after Cr(VI) adsorption. From this result, it can be suggested that magnetic chitosan nanoparticles could serve as a promising adsorbent for Cr(VI) in wastewater treatment technology.  相似文献   

12.
X-ray diffraction patterns (XRD), infrared Spectroscopy (IR) and near infrared spectroscopy (NIR) have been used to measure the adsorption of phenol on untreated montmorillonite and on hexadecyltrimethylammonium bromide (HDTMAB) modified montmorillonite. The mid infrared spectra indicate that both the surfactant molecule and phenol enter the interlayer of organoclays, replacing the interlayer cations. The higher concentration surfactant leads to a decrease in wavenumber of the bands of organoclays and to increase in intensity. The near infrared spectra (9000–4000 cm?1) show a prominent band 8260 cm?1, assigned to the combination result of the CH stretching vibrations of high concentration surfactant and absorbed phenol. The main band observed at 7090 cm?1 is assigned to the first fundamental overtone of the OH stretching vibrations at 3415 cm?1 for organoclay. The organoclays are characterised by prominent bands situated between 5900 and 5700 cm?1. Both the higher concentration of organic molecules and adsorbed phenol causing the near infrared spectra of organic clays to be more complex for spectra in the region from 4700 to 5500 cm?1. The main band of 4535 cm?1 for montmorillonite shifts towards the lower wavenumber sites for higher concentration organoclay. The intensity of near infrared spectra generally rises with the value of surfactant concentration increasing, showing certain regularity. It is concluded that phenol is adsorbed to significantly greater amounts on the higher concentration organoclays.  相似文献   

13.
Adsorption of proteins on polymer material plays an important role in a number of fields, particularly in separation of biomolecules by chromatographic methods. The work reports here the synthesis of modified cross-linked polystyrene gel beads as a stationary phase in liquid chromatography for the purification of factor IX. Suitable chemical groups, such as sulfonate which confer this polymer heparin-like adsorbing property, were grafted on the aromatic ring of the hydrophobic matrix. This functional group was chosen on the basis of the biospecific molecular interactions between factor IX and its ligand particularly heparin in such manner to enhance its binding ability and efficacy. Adsorption of factor IX on to this functional polymer was performed under physiological conditions according two modes: non-competitive adsorption (adsorption of factor IX alone) and competitive adsorption (adsorption of factor IX in the presence of another vitamin-K dependent coagulation factors). The adsorbed factor IX content at the interface allows to establish the chemisorption isotherm curves. The adsorption rate in both cases was found to be significantly high and the affinity constants, estimated by the Langmuir model, were: 4.7 × 108 and 4.1 × 108 l/M respectively. Affinity chromatography on column using this functional polymer as a stationary phase confirms its high ability to adsorb factor IX at low ionic strength. Thus, the synthesized packing material gel functionalised by sulfonate group can be used advantageously as a heparin-like adsorbent in purification of factor IX.  相似文献   

14.
Batch experiments were carried out to investigate the kinetics of adsorption of lead ions by steel slag on the basis of the external diffusion, intra-particle diffusion and adsorption reaction model (pseudo-first-order, pseudo-second-order). The results showed that the controlling step for the adsorption kinetics changed with the varying experimental parameters. When the particle size of steel slag was larger than 120 mesh, intra-particle diffusion of Pb2+ was the controlling step, and when the initial concentration of Pb2+ was less than 150 mg L?1 or the shaking rate was lower than 150 rpm, external diffusion of Pb2+ was promoted. Contrary to the former experimental conditions the adsorption reaction was the controlling step, and the adsorption followed second-order kinetics, with an adsorption rate constant of 13.26 g mg?1 min?1. The adsorption isotherm of Pb2+ with steel slag followed the Langmuir model, with a correlation coefficient of 0.99.  相似文献   

15.
Untreated Pinus halepensis sawdust has been investigated as an adsorbent for the removal of cadmium from aqueous solutions. Batch experiments were carried out to investigate the effect of pH, adsorbent dose, contact time, and metal concentration on sorption efficiency. The favorable pH for maximum cadmium adsorption was at 9.0. For the investigated cadmium concentrations (1–50 mg/L), maximum adsorption rates were achieved almost in the 10–20 min of contact. An adsorbent dose of 10 g/L was optimum for almost complete cadmium removal within 30 min from a 5 mg/L cadmium solution. For all contact times, an increase in cadmium concentration resulted in decrease in the percent cadmium removal (100–87%), and an increase in adsorption capacity (0.11–5.36 mg/g). The equilibrium adsorption data were best fitted with the Freundlich isotherm (R2 = 0.960). The kinetics of cadmium adsorption was very well described by the pseudo-second-order kinetic model (R2 > 0.999).  相似文献   

16.
A type of ZrO2·nH2O was synthesized and its Cr(VI) removal potential was investigated in this study. The kinetic study, adsorption isotherm, pH effect, thermodynamic study and desorption were examined in batch experiments. The kinetic process was described by a pseudo-second-order rate model very well. The Cr(VI) adsorption tended to increase with a decrease of pH. The adsorption data fitted well to the Langmuir model. The adsorption capacity increased from 61 to 66 mg g?1 when the temperature was increased from 298 to 338 K. The positive values of both ΔH° and ΔS° suggest an endothermic reaction and increase in randomness at the solid–liquid interface during the adsorption. ΔG° values obtained were negative indicating a spontaneous adsorption process. The effective desorption of Cr(VI) on ZrO2·nH2O could be achieved using distilled water at pH 12.  相似文献   

17.
On the basis of the biospecific molecular recognition between complementary chemical groups of xanthine oxidase (XO) and their ligands particularly sulphated glycoaminoglycans and heparin. Poly (styrene chlorosulfonyl) particles modified by sulfonate sodium groups was synthesized and its adsorption property towards cow's milk XO was established. The adsorption of XO onto this functional polymer was performed in batch at 4 °C and at pH 6.0 during 30 min. of incubation. The adsorbed XO content at the interface allows establishing the chemisorption isotherm curve. The affinity association estimated from this adsorption isotherm according to the Langmuir equation was found to be significantly high in the magnitude of 1.25 × 106 M? 1. Affinity chromatography on column using this functional polymer as a stationary phase confirms its high ability to adsorb XO at low ionic strength. In fact, the xanthine oxidase of the crude extract is strongly adsorbed onto the sorbent and is eluted at high ionic strength with out any significant loss of its biological activity. The purified enzyme possesses a protein flavin ratio (PFR) of 6.05 with a specific activity of 1.78 UI/mg. On the other hand, the electrophoresis of XO fraction showed a single band with a molecular weight of about 150 kDa. Thus, the synthesized beads functionalized by sulfonate group could be used efficiently and advantageously in the purification of XO instead of other conventional chromatographic methods which need several steps.  相似文献   

18.
CuO plates were obtained by microwave-hydrothermal processing at 130 °C for 30 min without any surfactant. X-ray diffraction, Rietveld refinement and selected area electron diffraction showed that the CuO plates present a monoclinic structure without secondary phases. The nitrogen adsorption isotherm measurements revealed a specific surface area of approximately 30 m2/g. Field-emission gun scanning electron microscopy and transmission electron microscope micrographs indicated that the growth process of these plates was through Ostwald ripening and aggregation of plates surface by Van der Waals forces along to the two [1 0 0] and [0 1 0] directions.  相似文献   

19.
《工程(英文)》2017,3(3):409-415
Natural adsorbents such as banana pseudostem can play a vital role in the removal of heavy metal elements from wastewater. Major water resources and chemical industries have been encountering difficulties in removing heavy metal elements using available conventional methods. This work demonstrates the potential to treat various effluents utilizing natural materials. A characterization of banana pseudostem powder was performed using environmental scanning electron microscopy (ESEM) and Fourier-transform infrared (FTIR) spectroscopy before and after the adsorption of lead(II). Experiments were carried out using a batch process for the removal of lead(II) from an aqueous solution. The effects of the adsorption kinetics were studied by altering various parameters such as initial pH, adsorbent dosage, initial lead ion concentration, and contact time. The results show that the point of zero charge (PZC) for the banana pseudostem powder was achieved at a pH of 5.5. The experimental data were analyzed using isotherm and kinetic models. The adsorption of lead(II) onto banana pseudostem powder was fitted using the Langmuir adsorption isotherm. The adsorption capacity was found to be 34.21 mg·g–1, and the pseudo second-order kinetic model showed the best fit. The optimum conditions were found using response surface methodology. The maximum removal was found to be 89%.  相似文献   

20.
Biomorphic porous nanocrystalline-calcium titanate (SPCTO) was successfully prepared using the sol–gel method and with sorghum straw as the template. Characterization was conducted through XRD, SEM and FTIR. The ability of SPCTO to adsorb nickel ion in water was assessed. Elution and regeneration conditions, as well as the thermodynamics and kinetics of nickel adsorption, were also investigated. The result showed that the sorbent by the sol–gel template method was porous and has a perovskite structure with an average particle diameter of 26 nm. The nickel ion could be quantitatively retained at a pH value range of 4–8, but the adsorbed nickel ion could be completely eluted using 2 mol L? 1 HNO3. The adsorption capacity of SPCTO for nickel was found to be 51.814 mg g? 1 and the adsorption behavior followed a Langmuir adsorption isotherm and a pseudo-second-order kinetic model. The enthalpy change (ΔH) of the adsorption process was 33.520 kJ mol? 1. At various temperatures, Gibbs free energy changes (ΔG) were negative, and entropy changes (ΔS) were positive. The activation energy (Ea) was 25.291 kJ mol? 1 for the adsorption. These results demonstrate that the adsorption was an endothermic and spontaneous physical process. This same method has been successfully applied in the preconcentration and determination of nickel in water and food samples with good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号