首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reducing energy use in the buildings sector: measures, costs, and examples   总被引:4,自引:0,他引:4  
This paper reviews the literature concerning the energy savings that can be achieved through optimized building shape and form, improved building envelopes, improved efficiencies of individual energy-using devices, alternative energy using systems in buildings, and through enlightened occupant behavior and operation of building systems. Cost information is also provided. Both new buildings and retrofits are discussed. Energy-relevant characteristics of the building envelope include window-to-wall ratios, insulation levels of the walls and roof, thermal resistance and solar heat gain coefficient of windows, degree of air tightness to prevent unwanted exchange of air between the inside and outside, and presence or absence of operable windows that connect to pathways for passive ventilation. Provision of a high-performance envelope is the single most important factor in the design of low-energy buildings, not only because it reduces the heating and cooling loads that the mechanical system must satisfy but also because it permits alternative (and low-energy) systems for meeting the reduced loads. In many cases, equipment with significantly greater efficiency than is currently used is available. However, the savings available through better and alternative energy-using systems (such as alternative heating, ventilation, cooling, and lighting systems) are generally much larger than the savings that can be achieved by using more efficient devices (such as boilers, fans, chillers, and lamps). Because improved building envelopes and improved building systems reduce the need for mechanical heating and cooling equipment, buildings with dramatically lower energy use (50–75% savings) often entail no greater construction cost than conventional design while yielding significant annual energy-cost savings.
L. D. Danny HarveyEmail:
  相似文献   

2.
Solar XXI building is a low energy office building where passive and active solar strategies have been applied to reduce the use of energy for heating, cooling and lighting, combining also an extensive photovoltaic façade for electricity production. Solar XXI opened in 2006 and is considered a high efficient building, close to a net zero energy building (NZEB), where the difference between the energy consumed and that produced is 1/10th of the energy consumed by a Portuguese standard new office building. Its design includes many energy efficiency concepts, such as a high insulated envelope, south sun exposure, windows external shading, photovoltaic panels heat recovery, ground-cooling system, daylighting, stack effect and cross ventilation. The solar gains of the windows and the effectiveness of shading devices were evaluated in order to correlate solar radiation, external and indoor air temperatures. It was also verified that amplitude-dampening of ground-cooled air ranged between 5 and 8 °C, following the trend of the analytical solution for heat diffusion of a cylindrical air/soil heat-exchanger.  相似文献   

3.
This paper presents and optimizes the annual heating, cooling and lighting energy consumption associated with applying different types and properties of window systems in a building envelope. Through using building simulation modeling, various window properties such as U-value, solar heat gain coefficient (SHGC), and visible transmittance (Tvis) are evaluated with different window wall ratios (WWRs) and orientations in five typical Asian climates: Manila, Taipei, Shanghai, Seoul and Sapporo. By means of a regression analysis, simple charts for the relationship between window properties and building energy performance are presented as a function of U-value, SHGC, Tvis, WWR, solar aperture, effective aperture, and orientation. As a design guideline in selecting energy saving windows, an optimized window system for each climate is plotted in detailed charts and tables.  相似文献   

4.
On a European level there is intense research activity to broaden the applications of solar thermal systems beyond their established domains (hot water, space heating support) and to foster their participation in the energy maps of the EU-Member States. Concentrated Solar Thermal (CST) systems are expected to play a key role in this effort, especially for achieving the medium and high temperatures needed, for electricity generation, for industrial applications but also for hybridized solar heating/cooling and desalination applications.This paper presents a proposal for implementation of a CST system in the building sector, based on a research carried out in the Laboratory of Environmental and Energy Efficient Design of Buildings and Settlements at the University of Thrace. Specifically, an integrated solar cooling system using parabolic trough solar collectors and double-effect chiller is discussed, used to cover the cooling needs of typical office building in Greece.As it was shown, the use of concentrating solar collectors leads to significantly higher output temperatures that can enable the use of two stage absorption chillers with a higher COP. Alternatively, when low or medium temperature heat is required, the use of CST systems takes less space to cope with it than traditional flat plate collectors. The combination of these parameters can contribute to removing key barriers associated with the broader diffusion of solar cooling technology, enhancing the potential to become more competitive to the conventional air conditioning technologies.  相似文献   

5.
Air-cooled chillers are widely used to provide cooling energy and yet pragmatic and simple energy efficient measures for them are still lacking. This paper considers how their coefficient of performance (COP) can be improved by using mist to pre-cool ambient air entering the condensers. The benefit of this application rests on the decrease of compressor power resulting from the reduced condenser air temperature with insignificant consumption of water and pump power associated with the mist generation. Based on a simulation analysis of an air-cooled screw chiller operating under head pressure control, applying such mist pre-cooling enables the COP to increase by up to 7.7%. Precise control of mist generation rate and integration with floating condensing temperature control are the major challenges of using a mist system to maximize electricity savings. The results of this study will prompt low-energy operation of existing air-cooled chillers working for various climatic conditions.  相似文献   

6.
中空纤维膜加湿系统能从根本上解决空气加湿过程中气液夹带的问题.通过搭建太阳能驱动的中空纤维膜加热加湿系统试验台并在冬季进行实验测试,分析出太阳能辐射量、空气体积流量和热水体积流量对系统加热加湿性能的影响.研究发现提高太阳能辐射量和空气体积流量对系统的加湿能力和热性能系数均有积极影响,而前者的影响更为显著.为了获得最好的...  相似文献   

7.
Absorption chillers can help to increase the performance of biogas-driven micro gas turbine (MGT) cogeneration plants. In this paper we analyse various integrated configurations of several types of commercially available absorption cooling chillers and MGT cogeneration systems driven by biogas. MGTs are fuelled with biogas and their waste heat is used to drive absorption chillers and other thermal energy users. The chillers considered in this study include single- and double-effect water/LiBr and ammonia/water chillers. The exhaust gas from the MGT can be used directly to drive the chiller or indirectly to produce hot water to drive the chiller. In this paper we conduct a case study for an existing sewage treatment plant. Chilled water is used to reduce humidity in the biogas pre-treatment process and cool the combustion air of the MGT. We identify the most interesting integrated configurations for trigeneration systems that use biogas and micro gas turbines. We analyse these configurations and compare them with conventional configurations using operational data from an existing sewage treatment plant. The best configurations are those that completely replace the existing system with a trigeneration plant that uses all the available biogas and additional natural gas to completely meet the heating demands of the sewage treatment plant.  相似文献   

8.
As renewable energy sources and net-zero energy homes become increasingly pervasive within the residential building industry, further reductions in consumption patterns will occur through demand side management (DSM). DSM can include measures such as energy-efficient system design, automated control and energy management systems, or policies and monitoring systems intended to alter user behavior. For an energy-efficient modern residence designed within a tropical context, several DSM strategies are considered for reductions in operational-phase energy consumption: a lightweight, thermally high-performing building envelope, installation of light dimmers to enhance user control of lighting, and comparison of a solar hot water system versus a point-of-use electric water heater to produce hot water for bathing demands. The energy-consumption savings associated with the three DSM strategies are simulated and normalized to an energy savings per cost of implementation basis in kWh per 1000 Thai Baht (THB) for comparison. The results show that financial investments in low-energy hot water heaters (i.e., solar water heating systems) result in relatively higher energy savings per unit financial investment than the other two strategies. Conversely, the installation of a lightweight, well-insulated envelope is highly expensive relative to its associated energy savings over a 25-year time frame. The savings associated with the insulated envelope, light dimmers, and hot water production strategies are evaluated at 80, 609 and 657 kWh/1000 THB investment, respectively.  相似文献   

9.
In this paper, we deal with the energy and exergy analysis of a fossil plant and ground and air source heat pump building heating system at two different dead-state temperatures. A zone model of a building with natural ventilation is considered and heat is being supplied by condensing boiler. The same zone model is applied for heat pump building heating system. Since energy and exergy demand are key parameters to see which system is efficient at what reference temperature, we did a study on the influence of energy and exergy efficiencies. In this regard, a commercial software package IDA-ICE program is used for calculation of fossil plant heating system, however, there is no inbuilt simulation model for heat pumps in IDA-ICE, different COP (coefficient of performance) curves of the earlier studies of heat pumps are taken into account for the evaluation of the heat pump input and output energy. The outcome of the energy and exergy flow analysis at two different dead-state temperatures revealed that the ground source heat pumps with ambient reference have better performance against all ground reference systems as well as fossil plant (conventional system) and air source heat pumps with ambient reference.  相似文献   

10.
暖通空调系统的高效节能运行高度依赖于传感器测量的准确性。在传感器全寿命运行周期中,不可避免发生各种故障,影响其准确性。为探究传感器故障对不同暖通空调系统的影响,文章以室温传感器偏差故障为例,针对武汉地区某办公建筑,同时开展地源热泵和"冷水机组+锅炉"两种暖通空调系统形式的能耗建模,对比分析-5℃~+5℃偏差故障对两种系统运行能耗、工作性能及室内热舒适性的影响差异。结果表明:室温传感器故障的偏差幅值方向对两种系统运行能耗、工作性能及室内热舒适性的影响规律不同。其中,地源热泵系统能耗受室温传感器偏差故障影响相对更小。  相似文献   

11.
This paper considers how to apply optimum condensing temperature control and variable chilled water flow to increase the coefficient of performance (COP) of air cooled centrifugal chillers. A thermodynamic model for the chillers was developed and validated using a wide range of operating data and specifications. The model considers real process phenomena, including capacity control by the inlet guide vanes of the compressor and an algorithm to determine the number and speed of condenser fans staged based on a set point of condensing temperature. Based on the validated model, it was found that optimizing the control of condensing temperature and varying the evaporator’s chilled water flow rate enable the COP to increase by 0.8–191.7%, depending on the load and ambient conditions. A cooling load profile of an office building in a subtropical climate was considered to assess the potential electricity savings resulting from the increased chiller COP and optimum staging of chillers and pumps. There is 16.3–21.0% reduction in the annual electricity consumption of the building’s chiller plant. The results of this paper provide useful information on how to implement a low energy chiller plant.  相似文献   

12.
The ventilation, heating and cooling of a building can be provided by advanced mechanical ventilation heat recovery systems (MVHR) which incorporate heat pumps. This paper covers the testing and performance of a novel MVHR heat pump system developed for the domestic market [S.B. Riffat, The University of Nottingham: Patent no. GB9522882.1, 1995; Patent no. GB9522882.1, 1996; Patent no. GB9507035.5, 1995]. The novel system uses revolving heat exchangers which both impel air and transfer heat. Low grade heat recovered from the exhaust air is upgraded by a heat pump and used for heating the fresh supply air. The system typically provides 2 kW of heating for air supplied at 250 m3/h. The prototype system has a heating coefficient of performance (COP) of up to 5 and an average system of COP 2.5 over a range of conditions. The system can also be used for cooling by switching the air flows over the evaporator and condenser. The prototype system requires very little maintenance and is compact and energy efficient.  相似文献   

13.
The purpose of this work is to investigate the potential of diminishing the energy consumed by typical low thermal mass office buildings for heating, cooling and lighting by using smart windows. The windows considered consisted of a double pane glazing unit in which a controllable absorbing layer is added on the interior surface of the exterior glass pane. This absorbing layer allows to change the optical properties of the window, resulting in a direct potential of control of the incident solar heat flux entering the building through the windows. A corresponding numerical model is developed showing that optimizing the solar heat flux absorption rate of the absorbing layer in regard of the necessary heating, cooling and lighting needs helps reducing significantly the total yearly energy consumption, and cooling peak loads. The simulations were done considering a building located in Quebec City, Canada.  相似文献   

14.
In this paper, we report a methodology, developed in the context of Smart Energy Efficient Middleware for Public Spaces European Project, aimed at exploiting ICT monitoring and control services to reduce energy usage and CO2 footprint in existing buildings. The approach does not require significant construction work as it is based on commercial-off-the-shelf devices and, where present, it exploits and integrates existing building management systems with new sensors and actuator networks. To make this possible, the proposed approach leverages upon the following main contributions: (a) to develop an integrated building automation and control system, (b) to implement a middleware for the energy-efficient buildings domain, (c) to provide a multi-dimensional building information modelling-based visualisation, and (d) to raise people’s awareness about energy efficiency. The research approach adopted in the project started with the selection, as case studies, of representative test and reference rooms in modern and historical buildings chosen for having different requirements and constraints in term of sensing and control technologies. Then, according to the features of the selected rooms, the strategies to reduce the energy consumptions were defined, taking into account the potential savings related to lighting, heating, ventilation, and air conditioning (HVAC) systems and other device loads (PC, printers, etc.). The strategies include both the control of building services and devices and the monitoring of environmental conditions and energy consumption. In the paper, the energy savings estimated through simulation, for both HVAC and lighting, are presented to highlight the potential of the designed system. After the implementation of the system in the demonstrator, results will be compared with the monitored data.  相似文献   

15.
This paper presents a case study of the prediction, potential and control of plume in wet cooling towers from a huge commercial building in Hong Kong based on the weather data available for a particular year. The power input is found to be lower and the coefficient of performance (COP) moderate when all the 10 towers with low speed are in use, while it is found to be reverse when there are five towers, especially, three low and two high‐speed towers are used. It is also found that the combined heating and cooling option can be a better approach than that of the heating option alone from the point of view of thermodynamics as well as from the point of view of economics. The COP of the chillers increases from 6.01 to 7.09 when the number of cooling towers increases from five to ten. On the other hand, the power consumption first decreases and then increases which is mainly due to the increment in the consumption of fan power from 270 to 900 kW for both options. The overall power consumption decreases slightly for the combined heating and cooling option, while in the heating option, the overall power consumption increases slightly. However, it is observed that a proper operation of cooling towers is an effective means to control and/or at least reduce the potential of visible plume generated by wet cooling towers at the existing chilling plant design for this particular building. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Solar-powered systems for cooling, dehumidification and air-conditioning   总被引:1,自引:0,他引:1  
This paper describes current trends in solar-powered air conditioning, which has seen renewed interest in recent years due to the growing awareness of global warming and other environmental problems. Closed-cycle heat-powered cooling devices are based mainly on absorption chillers, a proven technology employing LiBr–water as the working fluid pair. Recent developments in gas-fired systems of this type make available double- and triple-effect chillers with considerably higher COP than their single-effect counterparts, which makes it possible to reduce the amount of solar heat required per kW of cooling. These systems require, however, high-temperature solar collectors. The principles of multi-staging absorption systems are described. An economic comparison is provided which shows the total system cost to be dominated by the solar part of the system. At current prices, the high COP, high temperature alternative is still more costly than the low temperature one. Open-cycle desiccant systems employing either solid or liquid sorbents are described. While the main thrust in research on novel closed-cycle absorption systems has been toward increasing the operating temperature in order to improve efficiency through multi-staging, open-cycle absorption and desiccant systems have been developed for use with low temperature heat sources such as flat plate solar collectors. A novel open-cycle (DER) system is described, which makes it possible to use the solar heat at relatively low temperatures, for producing both chilled water and cold, dehumidified air in variable quantities, as required by the load.  相似文献   

17.
Old buildings refurbishment is essential for the global improvement of building energy indicators. Within this context, the paper focuses on the energy savings that may occur when using electrochromic (EC) windows, an interesting emerging technology alternative to shading devices to control solar gain in buildings located in Mediterranean climates. The EC windows technology is briefly presented and the optical properties adjustments of the glasses are discussed according to the operated range. The EC window dynamic behavior and the different control strategies are modeled and implemented in the ESP-r building simulation program. The EC window impact in the energy needs for heating and cooling is studied, considering different ambient parameters (exterior dry bulb temperature, interior dry bulb temperature and incident radiation) and set points for the EC control. A comparison of several windows solutions (single, double-glazing and EC windows), the type of building, internal gains from occupancy, lighting and equipment and the orientation of windows are considered for discussion through the analysis of the energy needs for heating and cooling. It is concluded that for this climate the best positive results are obtained when the EC are used in the west façade. For the south façade the results show no significant advantages in using EC windows.  相似文献   

18.
Thermal energy collected from a PV-solar air heating system is being used to provide cooling for the Mataro Library, near Barcelona. The system is designed to utilise surplus heat available from the ventilated PV facade and PV shed elements during the summer season to provide building cooling. A desiccant cooling machine was installed on the library roof with an additional solar air collector and connected to the existing ventilated PV façade and PV sheds. The desiccant cooling cycle is a novel open heat driven system that can be used to condition the air supplied to the building interior. Cooling power is supplied to the room space within the building by evaporative cooling of the fresh air supply, and the solar heat from the PV-solar air heating system provides the necessary regeneration air temperature for the desiccant machine. This paper describes the system and gives the main technical details. The cooling performance of the solar powered desiccant cooling system is evaluated by the detailed modelling of the complete cooling process. It is shown that air temperature level of the PV-solar air heating system of 70 °C or more can be efficiently used to regenerate the sorption wheel in the desiccant cooling machine. A solar fraction of 75% can be achieved by such an innovative system and the average COP of the cooling machine over the summer season is approximate 0.518.  相似文献   

19.
The energy and exergy flow for a space heating systems of a typical residential building of natural ventilation system with different heat generation plants have been modeled and compared. The aim of this comparison is to demonstrate which system leads to an efficient conversion and supply of energy/exergy within a building system.The analysis of a fossil plant heating system has been done with a typical building simulation software IDA–ICE. A zone model of a building with natural ventilation is considered and heat is being supplied by condensing boiler. The same zone model is applied for other cases of building heating systems where power generation plants are considered as ground and air source heat pumps at different operating conditions. Since there is no inbuilt simulation model for heat pumps in IDA–ICE, different COP curves of the earlier studies of heat pumps are taken into account for the evaluation of the heat pump input and output energy.The outcome of the energy and exergy flow analysis revealed that the ground source heat pump heating system is better than air source heat pump or conventional heating system. The realistic and efficient system in this study “ground source heat pump with condenser inlet temperature 30 °C and varying evaporator inlet temperature” has roughly 25% less demand of absolute primary energy and exergy whereas about 50% high overall primary coefficient of performance and overall primary exergy efficiency than base case (conventional system). The consequence of low absolute energy and exergy demands and high efficiencies lead to a sustainable building heating system.  相似文献   

20.
The integration of microgas turbines (MGT) and absorption chillers is an emerging technology that uses a wide range of fuels to produce electricity, cooling and heating simultaneously for small scale distributed generation in grid connected or isolated locations.This paper studies the performance of MGTs of different power capacities directly coupled to double-effect water–LiBr absorption chillers. In these systems the MGT exhaust gas is the heating medium to drive the chiller. Also post-combustion natural gas is used to increase the cooling capacity of the system. The paper analyses the effect of the post-combustion degree on the integrated system performance of four MGT power sizes. Two cases are considered. In the first, fresh air is added together with the post-combustion natural gas and in the second it is not added. In the latter case the oxygen necessary for the combustion reaction is extracted from the MGT exhaust gas stream. For the sake of comparison a study is also made of the performance of a more conventional system consisting of an MGT and a hot water heat exchanger to drive an absorption chiller. The main advantages of the new technology over this conventional system are that the COP of the chillers is higher because they are driven by higher temperatures, the production of electricity and chilled water is decoupled and there is a wider range of chilled water production capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号