共查询到20条相似文献,搜索用时 78 毫秒
1.
传统时序分解模型在去除网络流量序列中的趋势性和周期性成分后,用AR模型处理剩余序列,因而只适合处理粗时间粒度的流量,而无法处理具有长相关性的细时间粒度流量。本文用模糊自回归模型替代AR模型,使得改进的时序分解模型能够对任何时间粒度的网络流量进行建摸和预测。 相似文献
2.
3.
自回归模型在平面曲线识别中的应用 总被引:3,自引:0,他引:3
在计算机视觉中,平面曲线的形状分类和识别具有重要的意义,在立体足迹的重压面边界围线的形状分类和识别中,由于不能严格控制基准面方向的一致性,必须采取对透视变换不敏感的描述方法,从空间旋转不变的要求出发,首先从平面闭合曲线得到一维极径序列,进而采用该序列的自回归模型来完成特征提取并用于平面曲线的形状分类,与传统方法相比,这种方法提取的特征具有与采样起始点无关、受噪声影响小、计算简单、方便用于分类等优点 相似文献
4.
针对现有的自回归(Autoregressive,AR)模型对非平稳数据预测效果不佳的问题,提出了基于时变自回归(Time-Varying Autoregressive,TVAR)模型的时序预测方法.针对某型国产飞机发动机的低压转速信号,使用TVAR模型分别进行点预测和区间预测,并与AR模型的点预测结果进行对比.研究结果表明,TVAR模型能够很好地反映非平稳数据的变化趋势.在给定置信水平下,TVAR预测区间能够包含真实数据,因此TVAR模型在时序预测中具有更好的预测效果. 相似文献
5.
6.
针对基于反向传播(BP)神经网络和经典概率论及其衍生算法进行火灾损失预测时,存在系统结构复杂、依赖不稳定的探测数据、易陷入局部极小值等缺点,提出一种基于自适应模糊广义回归神经网络(GRNN)的区域火灾数据推理预测算法.在网络输入层使用改进模糊C-聚类算法,对初始数据进行权重修正,减少了噪声和孤立点对算法造成的影响,提高了预测值的逼近精度; 引入自适应函数优化GRNN算法,调整迭代收敛的扩展速度、变化步长,找到全局最优解,改善了过早收敛问题,提高了搜索效率.实验结果表明,该算法代入已确定火灾损失数据,解决了依赖不稳定探测数据问题,并且具有良好的泛化能力、非线性逼近能力. 相似文献
7.
流量是工业控制与生产中的一个重要参数.目前,涡街流量计应用相当广泛.但是,由于其工作原理的关系,它对外界的各种干扰非常敏感,使其现场测量精度大大低于实验室标定的精度.本文的主要目的是以数字信号处理的理论为基础,采用自回归模型谱估计的方法对涡街流量计的输出信号进行分析和处理,得出要测量的流量值.论文中分别采用计数的方法和自回归模型谱估计的方法进行实验.通过实验验证,自回归模型谱估计可以作为一种较好的方法,应用于处理流量计的输出信号,并且此方法得出的结果比脉冲计数方法得出的结果精度高. 相似文献
8.
针对网络流量预测,提出一类基于自组织映射(self-organizing map,SOM)神经网络的局部自回归(auto-regressive,AR)方法.根据SOM的联想记忆在时域的推广,在矢量量化临时联想记忆(vector-quantized temporal association memory,VQTAM)建模技术的基础上,给出具有多个局部线性AR模型的AR-SOM方法,基于前K个获胜神经元用权值代替输入向量建立单一时变局部AR模型的K-SOM方法,以及在完成数据向量聚类的同时,更新多个局部AR模型系数的LLM(local linear map)-SOM方法.相对于全局模型,基于SOM神经网络的局部AR方法能够灵活给出有效的监督神经结构,降低了计算复杂度.将本文方法应用于不同的网络流量预测实例中,并与现有方法相比,实验结果表明所提出的方法能有效地改善预测精度,且性能更好. 相似文献
9.
ARES:用于预测的情感感知自回归模型 总被引:1,自引:0,他引:1
随着Web2.0的蓬勃发展,互联网上产生了大量由用户发表的评论,其中表达的观点看法对大众消费的影响越来越大,因此分析评论中蕴含的情感信息对产品销量的预测以及市场战略的调整有实际意义.针对这一问题,在分析图书销售领域网络评论特点的基础上,提出了相应的情感分析方法,首先利用词性列表及前缀词典完成极性词词典的自动抽取与构建,然后采用基于词典的方法对图书的评论内容进行情感分析及量化,最后通过将抽取的情感因素融合到自回归模型中,建立了新的预测模型——情感感知自回归模型(autoregressive emotion-sensitive model,ARES).实验结果表明,基于词典的分析方法能够有效地反映出评论自身的情感信息,并且融入了情感分析结果的模型在销量预测方面具有更好的准确性. 相似文献
10.
ARIMA模型在网络流量预测中的应用研究 总被引:9,自引:0,他引:9
针对网络运行安全和可靠的要求,研究网络流量预测问题.网络流量具有高度自相似、时变性和非线性等时间序列特征,传统预测方法无法捕捉其时变性和自相似规律,导致预测精度比较低.为了提高网络流量的预测精度.在分析网络流量特征的基础上,提出一种基于ARIMA模型的网络流量预测方法.先采用差分法对网络流量原始数据平稳化处理,提取网络流量数据的自相似特征.然后将平稳后的数据利用能很好反映时变性和非线性的ARIMA模型对进行拟合和检验,建立网络流量的最优预测模型,最后根据获得最优预测模型对嗍络流量实例数据进行仿真预测.仿真结果表明,ARIMA模型的网络流量预测精度比其它预测模型要高,能够很好的反映网络流量的规律,在网络流量预测中有广泛应用前景. 相似文献
11.
自回归AR(p)预测模型是无线传感网络(WSN)中一种减少数据传输次数和降低能量消耗的方法。针对AR(p)模型在建模过程中忽略了不同时期的历史数据对预测值的影响存在的差异,导致模型预测精度不高、网络通信频率受影响的问题,提出了一种改进的预测模型FAR(p)。在AR(p)模型中引入一种新的模糊隶属度函数,通过模糊隶属度函数对预测模型的每个历史数据赋予权值,实现历史数据“重近轻远”的预测效果,并经二次加权平均算法处理后重新构建预测模型。仿真结果表明,改进的预测模型有效地提高了模型预测精度,减少了传感网络中数据传输次数,降低了能量消耗。 相似文献
12.
针对目前民航运输业延误率较高,而传统算法难以解决高精度延误预测的问题,提出一种基于随机连接团簇网络(CliqueNet)航班延误预测模型。该模型首先对航班数据和相关气象数据进行融合;然后,充分利用改进后的网络模型对融合后的数据集进行特征提取;最后,使用Softmax分类器进行航班离港延误各等级的高精度预测。模型的主要特点是:在团簇特征层的随机连接,以及在转换层引入通道和空间注意力残差(CSAR)模块。前者以更为有效的连接方式传递特征信息;后者则对特征信息进行通道和空间维度的双重标定,以提高准确率。实验结果表明,对融合数据进行预测,引入随机连接和CSAR模块后,新模型的准确率分别提高了0.5%、1.3%,最终准确率能达到93.40%。 相似文献
13.
基于二阶马尔可夫模型的模糊时间序列预测 总被引:1,自引:0,他引:1
针对当前模糊时间序列模型存在的缺乏有效论域划分方法和模糊关系前件多为一阶的现状,提出了基于二阶马尔可夫模型的模糊时间序列预测方法。应用模糊C均值聚类方法,获得序列中元素的隶属度;引入二阶马尔可夫模型中的转移概率矩阵表示模糊关系,更新了传统的模糊关系表示和运算;预测待求元素在各个模糊聚类的隶属度,并利用重心法去模糊化。将该模型运用到移动3G网络的性能预测中,与传统模糊时间序列预测方法相比,其准确性有了较大提高。 相似文献
14.
针对通用无线分组业务(GPRS)小区流量预测问题,对几种典型时序预测模型的性能进行了综合分析。在总结时序预测模型使用步骤的基础上,分析了自回归(AR)、自回归移动平均(ARIMA)和乘积季节自回归求和移动平均(ARIMA)模型的性能。首先,对GPRS小区流量的变化情况进行分析;再根据流量的自相关系数和偏相关系数,从不同的角度进行分析,分别得到了流量变化的AR模型和ARMA模型;进而利用小区流量以天为周期变化的特点,得到了流量变化的乘积季节ARIMA模型。最后根据GPRS小区历史流量数据,应用这三种模型预测将来某一时间的流量,并对模型性能进行比较研究。 相似文献
15.
16.
瓦斯涌出量的混合pi-sigma模糊神经网络预测模型 总被引:1,自引:0,他引:1
提出了一种利用混合pi-sigma模糊神经推理方法建立瓦斯涌出量的预测模型。该模型采用高斯基函数作为模糊子集的隶属度函数, 可在线动态调整隶属度函数和结论参数。与神经网络预测模型比较, 该模型具有物理意义明确、原理清晰、收敛速度快、预测精度高等特点,在对某矿瓦斯涌出量数据的仿真结果表明,该方法预测准确度高、速度快,并且结果具有可重复性,证明该方法是有效的。为便于工程实际应用, 在Matlab环境中开发了基于图形用户界面(GUI)的仿真应用界面,给出了使用方法和预测结果。实验同时表明,对所采用的数据,模型的训练精度设置为0.001时网络的泛化能力最好,网络训练精度和预测精度之间不具有正比关系。 相似文献
17.
18.
针对LOS/NLOS混合条件下对机动目标的鲁棒跟踪问题,提出一种基于AR预测模型的交互式多模型(Interacting Multiple Model,IMM)跟踪算法(ARIMM)。该算法利用AR预测模型对运动状态建模,针对LOS与NLOS条件下观测噪声的分布不同分别使用无迹卡尔曼滤波器(Unscented Kalman Filter,UKF)和改进的无迹卡尔曼滤波器(Robust Unscented Kalman Filter,RUKF),通过IMM方法估计出移动台的位置,利用该位置更新AR模型的参数,使AR模型与真实运动状态更加匹配,实现精确跟踪。仿真结果表明,在LOS/NLOS混合条件下,与传统的UKF和RUKF算法相比,该算法对机动目标跟踪的鲁棒性更好。 相似文献
19.
针对现有的广告点击率预估模型未能精准挖掘用户历史兴趣及历史兴趣对目标广告点击与否的影响,提出了一种基于改进Transformer的广告点击率预估模型.该模型采用Transformer网络捕捉隐藏在用户点击序列背后的潜在历史兴趣;同时针对Transformer建模用户历史兴趣无法有效关联目标广告的问题,提出了一种改进的Transformer网络.改进后的Transformer不但有效建模用户历史兴趣,而且考虑了跟目标广告的关联.新模型采用辅助损失函数来监督改进的Transformer对用户历史兴趣的抽取过程,然后采用注意力机制进一步建模用户的历史兴趣和目标广告的相关性以提升模型的预估性能.实验结果表明新模型有效提升了广告点击率的预估效果. 相似文献
20.
为科学合理地预测大气污染物PM2.5颗粒物浓度变化规律,分析PM2.5颗粒物浓度变化历史数据,综合判断外部条件(温度、风速、天气状况)和内部条件(其它污染物的浓度)对PM2.5颗粒物浓度变化的影响.采用一种改进型PSO优化的模糊神经网络,将粒子群算法与模糊神经网络进行融合,发挥PSO算法全局寻优的特点,预测PM2.5颗粒物浓度的变化规律.对某市2013年PM2.5颗粒物浓度进行预测和验证,验证结果表明,该算法具备良好的预测精度. 相似文献