首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
Youyi Xia  Min Wei  Yun Lu 《Synthetic Metals》2009,159(5-6):372-376
Poly(3,4-ethylenedioxythiophene) (PEDOT) hollow spheres with the size ranged from 130 to 820 nm and a conductivity of 8 × 10?2 S cm?1 were prepared simply and directly via a one-step self-assembly approach in the presence of poly(vinylpyrrolidone) (PVP) as a soft template. It was found that the formation probability of PEDOT hollow spheres depended on the concentration of PVP. Bulk quantities of PEDOT hollow spheres can be obtained readily under the optimal conditions such as the concentration of PVP > 0.175 mM and PVP/EDOT molar ratio <1.4. The electron-rich oxygen atoms on the lactam groups in PVP were proposed to act as the chemically active sites to anchor EDOT cation radicals by virtue of electrostatic interaction and cause the self-assembly of PEDOT hollow spheres. Our investigation for the formation mechanism of PEDOT hollow spheres may shed some light on preparing of other hollow materials by proper molecular design and experimental condition optimization.  相似文献   

2.
It has been shown that the films of a soluble conjugated polymer poly[(9,9-dioctyl-2,7-divinylene fluorenylene)-alt-{2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene}] for electronic devices can be prepared by the electrophoretic deposition with polymer suspensions derived from dilute polymer solutions which are so dilute that the conventional spin-coating technique is not applicable. For example, a 100 nm-thick film can be prepared on an indium-tin-oxide (ITO) electrode from a suspension from solution containing 0.1 g/l of the polymer. The thickness of the polymer film deposited is found to be almost proportional to the concentration of the polymer, and the linearity down to 5.0 × 10?3 g/l is confirmed. On the other hand, it has been found that coating the ITO electrode with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) salt results in low and nonlinear deposition rate.  相似文献   

3.
Poly(3,4-ethylenedioxythiophene) (PEDOT)/poly(1-vinyl-3-ethylimidazolium+ (trifluoromethane sulfonyl)imide?) (PIL) complexes were prepared at various PEDOT/PIL molar ratios and dispersed in propylene carbonate at a concentration of 1 wt%. After casting, the maximum conductivity was measured to be 1.2 × 10?1 S/cm, which could be explained by the 3D variable range hopping model. The optimum surface roughness of the PEDOT/PIL film was measured, showing Sa and Sq values of 5.92 and 11.0 nm, respectively. The conductivity of the polymerized PEDOT without a template process had low conductivity due to its poor surface roughness and large particle size. Therefore, the conductivity of PEDOT/PILs is determined by the particle size, crystallinity and surface morphology. These results were supported by surface mapping microscopy, X-ray photon spectroscopy, and X-ray diffraction.  相似文献   

4.
《Synthetic Metals》2005,155(1):130-137
Poly(3,4-ethylenedioxythiophene) (PEDOT)/poly(2-acrylamido-2-methyl-l-propane sulfonate) (PAMPS) composite films were electrochemically prepared from a mixture of water and N,N-dimethylformamide (DMF) containing 3,4-ethylenedioxythiophene (EDOT) and the polyelectrolyte, PAMPS. The presence of PAMPS in the PEDOT matrix was confirmed by spectroscopic and electrochemical methods. Depending on the current density, the conductivity of PEDOT/PAMPS free standing composite films reached values of 80 S/cm. Spectroelectrochemistry of neutralized PEDOT/PAMPS composite films showed a maximum absorption at 2.0 eV (615 nm) and a band gap of 1.65 eV, as calculated from the onset of the π–π* transition. Thin PEDOT/PAMPS composite films were found to switch rapidly between oxidized and reduced states in less than 0.4 s with an initial optical contrast of 76% at λmax: 615 nm. The morphology of the polymer composites demonstrates a cauliflower structure. Despite the high molecular weight of the polyelectrolyte, the film density was found to be similar to classical PEDOT (i.e., ca. 1.4 g/cm3), while the surface roughness averaged below 5%. As expected with the use of a sulfonated polyelectrolyte as dopant, cation exchange properties were observed with hexaammineruthenium(III) chloride as an active electrolyte.  相似文献   

5.
Herein, we report the preparation of highly stable Agnano–PEDOT nanocomposite by one-pot fashion in acidic condition using 3,4-ethylenedioxythiophene (EDOT) as a reductant and polystyrene sulfonate (PSS?) as a dopant for PEDOT as well as particle stabilizer for silver nanoparticles (AgNPs). The above nanocomposite denoted as Agnano–PEDOT/PSS? nanocomposite. The formation of AgNPs with concomitant EDOT oxidation was followed by UV–visible (UV–vis) spectroscopy at different time intervals. Agnano–PEDOT/PSS? nanocomposite shows absorption bands at 380 and above 700 nm, which correspond to surface plasmon resonance (SPR) peak of AgNPs and oxidized PEDOT, respectively. Agnano–PEDOT/PSS? nanocomposite was characterized by infrared (IR) spectroscopy, transmission electron microscopy (TEM), and XRD. TEM study reveals that AgNPs are distributed uniformly around PEDOT polymer with an average particle size diameter of 10–15 nm. In addition, Agnano–PEDOT/PSS? nanocomposite was tested for the catalytic reduction of 4-nitrophenol. For comparing stability, we were also synthesized AgNPs in the absence of PSS? (denoted as Agnano–PEDOT) using EDOT as reductant. UV–vis spectrum of Agnano–PEDOT nanocomposite revealed that AgNPs prepared in the absence of PSS? was not stable.  相似文献   

6.
Highly conducting free-standing poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) films with room-temperature electrical conductivity of about 300 S cm?1 were successfully prepared from PEDOT/PSS solution containing additives (DMSO or EG) on the smooth and flexible polypropylene (PP) film substrate with contact angle of 87°. As formed free-standing PEDOT/PSS films possess good flexibility and can be easily cut into various shapes with a knife. The contact angle of substrate has significant effect on the preparation of free-standing PEDOT/PSS films. Additionally, the process of adding DMSO or EG did not result in the change of carrier concentration but the increase of carrier mobility. The free-standing PEDOT/PSS film showed high electrical conductivity and stable Seebeck coefficient and its figure of merit (ZT) with high environment stability can be up to 10?2, one order of magnitude higher than that of pressed PEDOT/PSS pellets (10?3).  相似文献   

7.
《Synthetic Metals》2007,157(8-9):343-346
Employment of multilayer heterostructures is a common approach to achieve efficiency and stable organic light emitting diodes (OLEDs). In this work, we report multilayer blue polymer light-emitting devices (PLEDs) by using spin-coated fluorene-triarylamine copolymers as interlayers between the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT) and the emitting layer. A blue PLED with stepped hole injection profile yields an external quantum efficiency of 6.0% at a luminance of 9500 cd/m2 at 5.5 V and an extrapolated lifetime of more than 18,000 h from 100 cd/m2.  相似文献   

8.
X-ray (XPS and XANES) and Raman spectra of poly(3,4-ethylenedioxythiophene) (pEDOT) modified by iron hexacyanoferrate (Fehcf) network are presented. XANES studies allowed to postulate an octahedral surrounding of iron atoms in the material and identified nitrogen and carbon atoms as nearest neighbourhoods. XPS measurements reveal iron–nitrogen and iron–carbon bonds, supporting the XANES results. Chemical interaction between sulphur from pEDOT and iron was also evidenced by XPS. Although both methods give proof of Prussian Blue structure inside the polymer, Raman studies did not show any signal typical for CN at about 2160 cm?1 (ν). However, the presence of Fehcf was confirmed by the stretching vibrations of Fe–N bond at 146 cm?1 and Fe–CN vibrations at 270 cm?1. AFM imaging was performed to illustrate the roughness and morphology of the pEDOT/Fehcf surface.  相似文献   

9.
Nano-sized polyaniline (PANI) films were electrochemically deposited onto an ITO substrate by a pulse galvanostatic method (PGM) in an aqueous solution. The morphology of the as-prepared PANI film was characterized using a field emission scanning electron microscope (FESEM). It was observed that the as-prepared PANI films were highly porous, and showed a nano-sized rod-like or coralline-like morphology depending on the charge loading performed in the electropolymerization process. Furthermore, the PANI films were electrochemically measured by the galvanostatic charge–discharge (GCD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) tests in 1 mol L?1 HClO4 solution. The results showed that such PANI films had a favorable electrochemical activity and an excellent capacitance. The rod-like PANI film prepared with the charge loading of 1000 mC showed the highest discharge capacitance of 569.1 F g?1 at a low current density of 1 A g?1. The discharge capacitance retained 97.7% after 1000 cycles at a large current density of 10 A g?1.  相似文献   

10.
Dengyou Liu  Qimei Luo  Fuqiang Zhou 《Synthetic Metals》2010,160(15-16):1745-1748
Gold (Au) and copper (Cu) alloy catalysts were deposited on the defect sites of carbon nanotubes by spontaneous reduction among AuCl4?, Cu2+ and oxygen-containing functional groups. Compared with AuCu alloy catalysts prepared by adsorption methods and electrochemical deposition methods, AuCu alloy catalysts show excellent catalytic ability to glucose by spontaneous reduction. The linear range of nonenzymatic sensors that were prepared by spontaneous reduction for glucose detection is 0.08–9.26 mM, and detection limit is 4 μM. In addition, there are high sensitivity (22 μA mM?1), reproducibility (96%) and stability (95% after 60 days). Selectivity of this nonenzymatic sensor for ascorbic, uric acid and acetaminophen was also obtained.  相似文献   

11.
We have easily fabricated channel patterns of organic field-effect transistors (OFETs), in which channel lengths were 5 μm, by using wet-spun poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) microfibers with diameters of ca. 5 μm. Pentacene-based FETs with a top-contacted configuration, showed a hole mobility of 0.13 cm2 V?1 s?1 and on/off current ratio of 9.4 × 104. The device also showed large current of ca. 160 μA (VD = ?50 V; VG = ?50 V), reflecting shorter channel length of the devices. We have evaluated self-assembled monolayer (SAM) through measurements of water contact angle and by Zisman plot. As a result, critical surface tension of the octadecyltrichlorosilane (OTS)-treated SiO2 surface is 17 mN m?1 which is consistent with that of well-known SAM. We also well analyzed the cross-sections of the device by a scanning transmission electron microscopic (STEM) technique. The results indicated that the thicknesses of the pentacene layer in the channel part and Au layer in the source/drain part were ca. 30 and 30 nm, respectively. Furthermore, it is also indicated that the 100-nm grains of the pentacene were well adhered on the surface of the SAM-formed SiO2 layer.  相似文献   

12.
B.C. Kim  C.O. Too  J.S. Kwon  J.M. Ko  G.G. Wallace 《Synthetic Metals》2011,161(11-12):1130-1132
Flexible electrodes for supercapacitors have been prepared by depositing polypyrrole (PPy) on to a gold-coated PVDF membrane. Specific capacitance values of the order of 380 F g?1 for PPy/Nafion and 420 F g?1 for PPy/p-toluenesulfonate were obtained. For the PPy/Nafion electrode, an energy density of 56 Wh kg?1 and a power density of 15.50 kW kg?1 were available after 5000 cycles.Using a self-contained fully flexible device comprising polypyrrole as both electrodes and a PVDF membrane as separator, a capacitance of 30 F g?1 was observed after 5000 cycles.  相似文献   

13.
《Synthetic Metals》2007,157(2-3):120-124
Flexible light-emitting diodes, with simple device architectures, fabricated using a random copolymer of hole transporting dialkoxy-substituted phenylenevinylene (PV) with an electron transporting oxadiazole containing PV derivative as the emissive layer and higher work function aluminum cathodes have been examined and compared with control devices on glass substrates. In all devices poly(3,4-ethylenedioxythiophene) with poly(styrenesulfonate) (PEDOT:PSS) was used as the hole injection layer and a thin layer of cesium fluoride or lithium fluoride has been used at the polymer/cathode interface to aid electron injection. Devices on plastic substrates with a lithium fluoride interlayer performed the best, exhibiting an average external quantum efficiency (EQE) of 0.8% and luminance of 1600 cd/m2 at 40 mA/cm2 (7.8 V). Stability of this device and morphology of the emissive film have also been investigated.  相似文献   

14.
Chaoqing Bian  Aishui Yu 《Synthetic Metals》2010,160(13-14):1579-1583
Polyaniline nanofibres have been prepared without any template or surfactant. Although the morphology of polyaniline is well kept after dealing with aqueous ammonia, de-doped polyaniline nanofibres with micropores are of better electrochemical capacitor performances in 1 M H2SO4 aqueous solution. Its specific capacitance is 593 F g?1 at a constant current density of 2.5 A g?1, and can be subjected to charge/discharge over 5000 cycles in the voltage range of 0–0.65 V. Moreover, its capacitance retention ratio reaches circa 87% with the current densities increasing from 2.5 A g?1 to 15 A g?1.  相似文献   

15.
The conducting polymers, polypyrrole and polyaniline, were synthesized by chemical oxidative polymerization of the corresponding monomers in 0.1 M sulfuric acid using cerium(IV) sulfate as the oxidant at mole ratios of oxidant-to-monomer ranging from 0.5 to 3. The yields of the oxidation products were determined, and the samples were characterized with respect to their elemental composition, molecular structure, and morphology. The conductivity of polypyrrole prepared in 0.1 M sulfuric acid, 10?1 to 100 S cm?1, was higher compared with the conductivity of polyaniline prepared under the same conditions, 10?3 to 10?1 S cm?1. The loss of mass after deprotonation with ammonium hydroxide is reported, and discussed in terms of the type of protonation as also reflected by FTIR spectroscopy. The conductivity of polypyrrole bases remained at relatively high level, 10?5 to 10?3 S cm?1, while PANI bases became non-conducting, 10?12 to 10?10 S cm?1. The polymers had a granular morphology in all cases.  相似文献   

16.
Macroscopic SiC nanowires (SiCNWs) were successfully synthesized at the gram level (2–4 g h?1) by using a simple solid–vapor reaction of silicon powders and carbon oxides, assisted by ZnS. This results in a promising material for a wide range of applications. The obtained products possess a small size of 10–30 nm and a good single-crystal structure. In addition, a specific surface area of 1.6 m2 g?1 was achieved. A high electrochemical activity to H2 adsorption/desorption and methanol oxidation was observed from cyclic voltammograms in H2SO4 and H2SO4/CH3OH solutions after loading with 50 wt.% Pt. Furthermore, a high catalytic performance for oxygen reduction at ~0.57 V and good chemical stability were displayed. The novel SiCNW-supported catalyst shows potential for fuel cells with long lifetimes.  相似文献   

17.
The composites of multi-walled carbon nanotubes (MWNT) wrapped with low bandgap conjugated polymer and poly(methyl methacrylate) (PMMA) were prepared for transparent conductive films. NIR-absorbing poly(ethyl thieno[3,4-b]thiophene-2-carboxylate) (PTTEt) with Eg of 1.0 eV was used in this study. Upon hybridization with MWNT, PTTEt in an insulating state became partially conductive due to electron transfer from PTTEt to MWNT, meaning that PTTEt can function as conductive glue interconnecting MWNT in a PMMA matrix. The electrical conduction of the composites (PTTEt-MWNT/PMMA), consisting of PTTEt-wrapped MWNT (PTTEt-MWNT/PMMA) and PMMA, showed the percolation at 0.10 wt% MWNT loading, which was ca. 0.18 wt% lower than the composites of MWNT and PMMA (MWNT/PMMA). The maximum conductivity of PTTEt-MWNT/PMMA, on the other hand, was one order of magnitude lower than that of MWNT/PMMA, suggesting that PTTEt incorporation onto MWNT for transparent conductive films is effective within a specific range of MWNT loadings (i.e., between percolation thresholds of MWNT/PMMA and PTTEt–MWNT/PMMA). The comparison of transmittance of PTTEt–MWNT/PMMA (0.18 wt% MWNT) with MWNT/PMMA (0.32 wt% MWNT), possessing the same conductivities (3 × 10?3 S cm?1), showed ca. 10% enhanced transmittance at 550 nm. These results imply that hybridization of low bandgap conjugated polymers with carbon nanotubes can be utilized for the reduction of percolation threshold and the increase of optical transparency without sacrificing conductivities at low MWNT loadings.  相似文献   

18.
Polyaniline (PANI) reduces silver nitrate to metallic silver. Composites based on conducting polymer and silver have been prepared with equimolar proportions of reactants. Polyaniline bases having different morphologies – granular or nanotubular – and oligoaniline microspheres have been left to react with silver nitrate in acidic, neutral, and alkaline media. The content of silver, typically 20–30 wt.%, was determined by thermogravimetric analysis. Clusters of 40–80 nm silver particles are produced in the granular form of PANI. The formation of silver inside PANI nanotubes has been observed. With oligoaniline microspheres, silver was produced on their surface, and on PANI agglomerates accompanying them. The highest conductivity, 943 S cm?1, was found with silver reduced by nanotubular PANI base in 0.1 M nitric acid at 17.3 wt.% silver content. The standard granular PANI, used as a reference material, yielded a composite having a much lower conductivity of 8.3 × 10?5 S cm?1 at 24.3 wt.% Ag. There is no simple correlation between the conductivity and silver content. Infrared and Raman spectroscopies have been used to study the changes in the molecular structure of the PANI bases of various morphologies before and after reaction with silver nitrate.  相似文献   

19.
Polyaniline (PANI) was prepared by the oxidative polymerization of aniline. The deprotonated product, a PANI base, was carbonized in an inert atmosphere at temperatures up to 800 °C for various times. The mass decreased to 40–50 wt.% at temperatures above 600 °C. The progress of molecular structure during carbonization was followed by infrared and Raman spectroscopies. The carbonization at 650 °C for 1 h is suggested for the optimum conversion of PANI to carbon. The product retained the original globular structure of PANI. The conductivity of the carbonized material was low for carbonizations below 600 °C, <10?10 S cm?1, and increased to 10?4 S cm?1 after treatment at 800 °C. The content of nitrogen, ~10 wt.%, was not affected appreciably by the carbonization.  相似文献   

20.
S.V. Jadhav  Vijaya Puri 《Synthetic Metals》2008,158(21-24):883-887
Polyaniline (PANI) thin film on alumina was prepared by the chemical oxidation of aniline with ammonium peroxydisulphate in acidic aqueous medium. DC conductivity, microwave transmission and reflection, microwave conductivity, shielding effectiveness and microwave dielectric constant of the conducting PANI films are reported. DC conductivity was between 0.15 × 10?3 and 3.13 × 10?3 S/cm. Microwave conductivity was between 0.2 and 10 S/cm. The PANI films coated on alumina gave shielding effectiveness value of ?1 to ?4 db. The ?′ was between 2 and 350 whereas ?″ was between 437 and 60. Measurements have been carried over the frequency range of 8.2–18 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号