首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
基于项目评分预测的协同过滤推荐算法   总被引:149,自引:4,他引:149       下载免费PDF全文
邓爱林  朱扬勇  施伯乐 《软件学报》2003,14(9):1621-1628
推荐系统是电子商务系统中最重要的技术之一.随着电子商务系统用户数目和商品数目的日益增加,在整个商品空间上用户评分数据极端稀疏,传统的相似性度量方法均存在各自的弊端,导致推荐系统的推荐质量急剧下降.针对用户评分数据极端稀疏情况下传统相似性度量方法的不足,提出了一种基于项目评分预测的协同过滤推荐算法,根据项目之间的相似性初步预测用户对未评分项目的评分,在此基础上,采用一种新颖的相似性度量方法计算目标用户的最近邻居.实验结果表明,该算法可以有效地解决用户评分数据极端稀疏情况下传统相似性度量方法存在的问题,显著地提高推荐系统的推荐质量.  相似文献   

2.
基于内容预测和项目评分的协同过滤推荐   总被引:8,自引:1,他引:8  
曾艳  麦永浩 《计算机应用》2004,24(1):111-113
文中提出了一种基于内容预测和项目评分的协同过滤推荐算法,根据基于内容的推荐计算出用户对未评分项目的评分,在此基础上采用一种基于项目的协同过滤推荐算法计算项目的相似性,随后作出预测。实验结果表明,该算法可以有效解决用户评分数据极端稀疏的情况,同时运用基于项目的相似性度量方法改善了推荐的精确性,显著提高推荐系统的推荐质量。  相似文献   

3.
对基于余弦相似性、相关相似性与项目评分的CF算法进行了性能对比与评价,对其在个性化推荐系统中的应用、面临的问题以及相应的解决方法进行了分析与研究。  相似文献   

4.
结合似然关系模型和用户等级的协同过滤推荐算法   总被引:4,自引:0,他引:4  
针对传统协同过滤推荐算法的稀疏性、扩展性问题,提出了结合似然关系模型和用户等级的协同过滤推荐算法.首先,定义了用户等级函数,采用基于用户等级的协同过滤方法,在不影响推荐质量的前提下有效提高了推荐效率,从而解决扩展性问题;然后,将其与似然关系模型相结合,使之能够综合利用用户信息、项目信息、用户对项目的评分数据,对不同用户给出不同的推荐策略,从而解决稀疏性问题,提高推荐质量.在MovieLens数据集上的实验结果表明,该算法比单纯使用基于似然关系模型或传统协同过滤技术的推荐算法,不仅推荐质量有所提高,推荐速度比传统协同过滤算法明显加快.  相似文献   

5.
基于项目聚类的协同过滤推荐算法   总被引:49,自引:0,他引:49  
推荐系统是电子商务中最重要的技术之一 ,协同过滤是推荐系统中采用最为广泛也是最成功的推荐技术 .随着电子商务系统用户数目和商品数目日益增加 ,在整个用户空间上寻找目标用户的最近邻居非常耗时 ,导致推荐系统的实时性要求难以保证 .针对上述问题 ,本文提出了一种基于项目聚类的协同过滤推荐算法 ,根据用户对项目评分的相似性对项目进行聚类 ,生成相应的聚类中心 ,在此基础上计算目标项目与聚类中心的相似性 ,从而只需要在与目标项目最相似的若干个聚类中就能寻找到目标项目的大部分最近邻居并产生推荐列表 .实验结果表明 ,本算法可以有效提高推荐系统的实时响应速度  相似文献   

6.
针对传统的基于用户的协同过滤(UCF)模型在相似性度量过程中没有充分考虑项目属性的问题,提出了两种考虑项目属性的协同过滤推荐模型。模型首先对用户评分相似性进行优化;然后从项目属性的角度统计用户关于不同项目的评价次数,获得优化的基于项目属性的用户相似性;最后通过自适应平衡因子协调处理两方面的相似性结果进行项目预测与推荐。实验结果表明,在不同的数据集中,新提出的模型不仅时间花费较为合理,而且评分预测准确性明显提高,平均提高了5%,从而证明了模型在改进用户相似性度量精度方面的有效性。  相似文献   

7.
针对CF推荐技术依赖的评分矩阵在现实中存在的稀疏性问题,提出用户-项目平均相似度协同过滤推荐算法(ASUCF)。对评分矩阵进行充分挖掘、多次利用,引入平均相似度来惩罚用户或项目的评分或被评分的波动;综合考虑用户和项目两方面,提高预测评分的可靠性。实验结果表明,该方法可以有效提高预测的准确性及推荐质量。  相似文献   

8.
结合项目分类和云模型的协同过滤推荐算法   总被引:2,自引:2,他引:0  
为了解决用户评分数据稀疏性问题和传统相似性计算方法因严格匹配对象属性而产生的弊端,结合项目分类和云模型提出了一种改进的协同过滤推荐算法。首先,按项目分类得到类别矩阵;然后利用云模型计算类内项目间的相似度并获取具有最高相似度的邻居项目的评分,为类内未评分项目进行预测填充;再利用云模型计算类内用户间的相似度得到用户邻居,最后给出最终的预测评分并产生推荐。实验结果表明,该算法不仅有效地解决了数据稀疏性及传统相似性方法存在的弊端,还提高了用户兴趣及最近邻寻找的准确性;同时,该算法只需计算新增用户或项目所在的类别即可,大大增强了系统的可扩展性。  相似文献   

9.
针对传统协同过滤模型中存在的数据稀疏性问题,提出一种基于信任模型填充的协同过滤推荐模型。对信任属性进行研究,通过建立信任模型对评分矩阵进行预填充以提高数据存储密度,利用相似性模型分别从项目和用户属性的角度度量项目相似性,通过自适应协调因子协调处理两方面的相似性度量结果,获得最终的项目预测评分,基于不同的数据集进行实验验证,结果表明,在不同的数据集中,与传统的协同过滤模型相比,该模型能够有效地处理评分矩阵的数据稀疏性问题,提高系统评分预测的准确度,平均改进程度为8%。  相似文献   

10.
基于相关均值的协同过滤推荐算法   总被引:1,自引:1,他引:0  
陈志敏  沈洁  赵耀 《计算机工程》2009,35(22):53-55
针对在用户评分数据极端稀疏环境下传统协同过滤推荐算法存在的弊端,从提高邻居用户识别准确性出发,对传统相似性度量方法进行改进,在此基础上提出一种基于相关均值的推荐算法。实验结果表明,该算法能增强邻居用户在推荐中的影响力,有效提高推荐精度,改善推荐质量。  相似文献   

11.
基于相似度传递的协同过滤算法   总被引:1,自引:1,他引:1  
协同过滤算法是个性化推荐系统中应用较广的算法之一。随着用户数量及项目数量的增加,数据的稀疏问题成为影响个性化推荐质量的重要因素。为此,提出一种基于相似度传递的协同过滤算法。该算法能使大于阈值的用户相似度在有限路径长度上传递,增加可用于计算推荐值的用户最近邻居的数量,减少数据稀疏问题的影响,提高推荐质量。  相似文献   

12.
基于邻居决策的协同过滤推荐算法   总被引:5,自引:0,他引:5  
协同过滤技术应用于个性化推荐系统中,稀疏性问题和可扩展性问题成为亟需解决的问题。针对传统方法的不足,提出一种凭借邻居数做决策的方法,比较各个待测位置的用户邻居数和项目邻居数,由数量多的一方作预测,同时对预测值判定给出一种合理而有效的度量方法。实验结果表明,该方法能够提高推荐质量。  相似文献   

13.
协同过滤算法中用户相似性度量的准确性对推荐质量有显著影响。为了提高用户协同过滤算法中近邻选择的准确率,提出一种加权的皮尔逊相关系数(PCC),可根据用户-项目的评分数,直接计算出PCC加权因子。将改进的皮尔逊相似度机制用于MovieLens,Douban和Epinions数据集进行实证分析。结果表明,提出的算法可以有效提高协同过滤推荐的平均绝对误差(MAE)和准确度。  相似文献   

14.
随着电子商务推荐系统中用户和商品数目的增加,用户商品评分数据集的稀疏性会导致协同过滤推荐算法的推荐质量下降.针对该问题,提出一种基于单分类的协同过滤推荐算法.根据目标用户评分商品对应的类别,选择候选最近邻居集,采用单分类预测用户对商品的评分,以减小目标用户与候选最近邻居所形成的数据集稀疏性.实验结果表明,该算法能提高寻...  相似文献   

15.
推荐系统是电子商务系统中最重要的技术之一,用户相似性度量方法是影响推荐算法准确率高低的关键因素。针对用户评分数据极端稀疏情况下传统相似性度量方法的不足,提出了一种基于群体兴趣偏好度的协同过滤推荐算法,根据群体兴趣偏好度来预测用户对未评分项目的评分,在此基础上再采用传统的相似性度量方法计算目标用户的最近邻居。实验结果表明,该算法可以有效解决用户评分数据极端稀疏情况下传统相似性度量方法存在的问题,显著提高推荐系统的推荐质量。  相似文献   

16.
基于项的协同过滤在推荐系统中的应用研究   总被引:3,自引:1,他引:3  
分析基于项的协同过滤在推荐系统中应用及所存在的问题,提出了一个基于项的协同过滤改进算法,并给出了改进算法在标准数据集上的实验结果,对改进算法与原算法进行了相关性能的比较分析,证明了改进算法的有效性.最后,对研究进行了总结,指出存在的不足,提出了进一步研究的方向.  相似文献   

17.
为缓解推荐系统中用户模糊评价带来的推荐准确性低的问题,构建基于单值中智集的协同过滤推荐模型.首先,构建用户—项目评分矩阵,划分用户评分等级,并将用户评分按照单值中智计算公式转换得到评分对应的真值隶属度、不确定值隶属度、非真值隶属度.然后,引入极端评价计算公式,将其作为极端评分惩罚系数,得到基于单值中智数分数的相似度计算公式.最后,结合杰卡德相关系数得到最终用户相似度.基于单值中智集的协同过滤推荐方法在公开数据集MovieLens上比较验证,实验结果发现融合单值中智集的方法在RMSE、MAE评价指标上均比其他方法有2%~3%的提升,能够有效提高推荐精度,更好地处理模糊问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号