共查询到16条相似文献,搜索用时 78 毫秒
1.
为了提高椭圆曲线底层域运算的效率,基于将乘法运算转换为平方运算的思想,提出在素数域[GFP]上用仿射坐标直接计算[7P]和[7kP]的改进算法,其运算量分别为[I+18M+12S]和[I+(17k+2)M+(14k+1)S],与已有的最好算法相比,效率分别提升了8.3%和10.3%。另外,基于相同的思想给出了素数域[GFP]上用仿射坐标系直接计算[5kP]的改进算法,其运算量为[I+(9k+2)M+(14k+1)S],与徐凯平和Mishra等人所提的算法相比,效率分别提升了17.2%和35.7%。 相似文献
2.
椭圆曲线密码体制的快速实现依赖于标量乘法的运算效率。相对于双基链,多基链的表示形式由于其更短的链长和汉明重量更适合于计算椭圆曲线的标量乘法。本文提出一种新的基于2,5,7的多基链整数表示形式,并结合半点运算与EXTEND SMBR表示方法给出一种有效计算椭圆曲线标量乘法的算法。用MIRACL库在VC++平台上实现了该算法,并与其他算法进行了比较。实验结果表明:该方法以增加小量的预存储点为代价,有效的降低标量乘法计算的运算量和复杂度,有利于椭圆曲线密码体制的快速实现。 相似文献
3.
椭圆曲线标量乘是椭圆密码体制中最耗时的运算,其中求逆运算的次数直接决定了标量乘法的性质。转换求逆为乘法运算能够降低求逆次数。根据这个思想,给出在素数域Fp上用仿射坐标直接计算5P的算法,比传统方法节省了两次求逆运算。同时还给出直接计算5kP的算法,比重复计算k次5P更有效。最后结合多基链把这两个新算法应用到标量乘中。实验结果表明,该方法与以往的标量乘算法相比,效率可提高6.5%~14%,相交处I/M可降到1.1。 相似文献
4.
椭圆曲线密码体制中标量乘法的快速算法 总被引:4,自引:1,他引:4
求逆是标量乘法中最耗时的运算,求逆运算次数的多少直接决定标量乘法的性能。转换求逆为乘法运算能够降低求逆次数。根据这种思想,提出了素域Fp上用仿射坐标直接计算3P+Q的算法,其运算量为1I+3S+16M,比Ciet等人提出的方法节省了一次求逆运算。同时还给出直接计算3kP的算法,该算法比重复计算k次3P更有效。最后结合3-NAFw的编码方法,把两个新算法应用到标量乘法中。结果表明,运用3P+Q、3kP的标量乘法比传统的NAF、NAF4等方法更有效,相交处I/M的值可降为5.4。 相似文献
5.
基于求逆转换为乘法的思想,利用仿射坐标提出了直接计算椭圆曲线上[7P]的算法,该算法运算量为I+23M+10S,比现有的算法节省了一次求逆运算,同时也给出了直接计算[7kP]的快速算法,该算法比重复计算[k]次[7P]更有效。结合多基数系统将这些新算法应用到标量乘法中,实验结果表明,在NIST推荐的椭圆曲线上,新算法的效率优于徐凯平等人所提的算法及传统的ternary-binary、3-NAF、Dimitro算法,相交处I/M可降至2.4。 相似文献
6.
为了提高椭圆曲线底层域运算的效率,基于将乘法转换为平方运算的思想,提出在素数域[FP]上用雅克比坐标直接计算[2kP]和[3kP]的改进算法,其运算量分别为[(3k-1)M+(5k+3)S]和[(6k-1)M+(9k+3)S],与DIMITROY和周梦等人所提的算法相比,算法效率分别提升了6.25%和5%。另外,利用相同的原理,给出了素数域[FP]上用在仿射坐标系直接计算[3kP]的改进算法,其运算量为[I+(6k+1)M+(9k+1)S],与周梦和殷新春等人所提的算法相比,效率分别提升了3.4%和24%。 相似文献
7.
为了提高椭圆曲线底层域运算的效率,基于将求逆转换为乘法运算的思想,提出了在素数域[FP]上用仿射坐标直接计算4P和5P的快速算法,其运算量分别为I+7M+8S和I+12M+10S,与Duc-Phong和徐凯平等人所提的算法相比,效率分别提升了4.6%和2.6%。同时在仿射坐标下给出了一种直接计算[5kP]的快速算法,其运算量为[I+(15k+1)M+][(10k-1)S],与徐凯平和Mishra等人所提的算法相比,效率分别提升了5.7%和26.8%。 相似文献
8.
标量乘运算从整体上决定了椭圆曲线密码体制的快速实现效率,在一些椭圆曲线公钥密码体制中需要计算多标量乘。多基数链的标量表示长度更短、非零比特数目更少,较好地适用于椭圆曲线标量乘的快速计算。为了提高椭圆曲线密码的效率,在已有的二进制域和素域的标量乘算法的基础上,结合滑动窗口技术、多基算法,提出新的更高效的多标量乘算法。实验结果表明,新算法与传统Shamir算法和交错NAF算法相比,其所需的运算量更少,能有效地提高椭圆曲线多标量乘算法的效率,使多标量乘的运算更高效。相比于其他算法,新算法的计算效率比已有的多标量乘算法提高了约7.9%~20.6%。 相似文献
9.
10.
11.
12.
针对椭圆曲线密码体制中标量乘与多标量乘运算耗时过长的问题,设计以2、3、7为基元的多基整数表示方法,并结合多基数系统(MBNS)及滑动窗口算法,提出基于MBNS滑动窗口(Sliding MBNS)和交错MBNS滑动窗口(I-MBNS)的多标量乘快速算法,分析并比较两种多标量乘快速算法在二元域和素域及不同窗口宽度下的平均... 相似文献
13.
椭圆曲线点乘的实现速度决定了椭圆曲线密码算法(ECC)的实现速度。采用蒙哥马利点乘算法,其中模乘运算、模平方运算采用全并行算法,模逆运算采用费马·小定理并在实现中进行了优化,完成了椭圆曲线点乘的快速运算。采用Xilinx公司的Virtex-5器件族的XCV220T作为目标器件,完成了综合与实现。通过时序后仿真,其时钟频率可以达到40MHz,实现一次点乘运算仅需要14.9μs。 相似文献
14.
分析了如何改造Doubling攻击来攻击Koblitz曲线上的标量乘算法,提出了一种利用半点操作对输入的点进行随机化的方法,并将其与Koblitz曲线上的固定窗口算法结合起来,以抵抗边带信道攻击。分析表明,该算法不仅具备了可以抵抗简单功耗分析、差分功耗分析、改进的差分功耗分析、零值攻击和Doubling攻击的性质,而且保持了运算的高效,具有实际意义。 相似文献
15.
16.
椭圆曲线密码体制(ECC)是一种基于代数曲线的公钥密码体制。椭圆曲线上点运算是该密码体制核心运算,而坐标系的选取决定了点运算速度。为了提高椭圆曲线标量乘速度,在对已有仿射坐标系、Standard投影坐标系、Jacobian投影坐标系和Lopez & Dahab投影坐标系研究的基础上,提出了一种Lopez & Dahab投影坐标系扩展形式,并基于此构建了一种混合坐标系。算法复杂度分析表明,在该混合坐标系下,椭圆曲线标量乘运算时间复杂度比已有坐标系下运算时间复杂度要小。 相似文献