首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study employs mathematical modeling along with a recursive searching algorithm to determine the optimal run time for an imperfect finite production rate model with scrap, rework, and stochastic machine breakdown. In real-life manufacturing systems, generation of defective items and machine breakdown are inevitable. The objective of this paper is to address these issues and to be able to derive the optimal production run time. It is assumed that the proposed manufacturing system produces defective items randomly, a portion of them is considered to be scrap, and the other portion can be repaired through rework. Further, the proposed system is subject to random breakdown and when it occurs, the abort/resume (AR) policy is adopted. Under such an inventory control policy, the production of the interrupted lot will be resumed immediately when machine is fixed and restored. Mathematical modeling along with a recursive searching algorithm is used for deriving the replenishment policy for such a realistic production system.  相似文献   

2.
This paper employs mathematical modeling for solving manufacturing run time problem with random defective rate and stochastic machine breakdown. In real life manufacturing systems, generation of nonconforming items and unexpected breakdown of production equipment are inevitable. For the purpose of addressing these practical issues, this paper studies a system that may produce defective items randomly and it is also subject to a random equipment failure. A no resumption inventory control policy is adopted when breakdown occurs. Under such a policy, the interrupted lot is aborted and malfunction machine is immediately under repair. A new lot will be started only when all on-hand inventory are depleted. Modeling and numerical analyses are used to establish the solution procedure for such a problem. As a result, the optimal manufacturing run time that minimizes the long-run average production–inventory cost is derived. A numerical example is provided to show how the solution procedure works as well as the usages of research results.  相似文献   

3.
This article develops a single-manufacturer single-retailer production-inventory model in which the manufacturer delivers the retailer’s ordered quantity in unequal shipments. The manufacturer’s production process is imperfect and it may produce some defective items during a production run. The retailer performs a screening process immediately after receiving the order from the manufacturer. The expected average total cost of the integrated production-inventory system is derived using renewal theory and a solution procedure is suggested to determine the optimal production and shipment policy. An extensive numerical study based on different sets of parameter values is conducted and the optimal results so obtained are analysed to examine the relative performance of the models under equal and unequal shipment policies.  相似文献   

4.
This paper addresses the problem of scheduling n jobs on a proportionate two-machine flowshop where the machines are subject to random breakdowns and setup times are considered separate from processing times. The considered performance measure is makespan. Sequences that minimize makespan with probability 1 are obtained when the first or the second machine is subject to random breakdowns without making any assumptions about downtime distributions or counting processes. It is assumed that the processing and setup times on one machine dominate the corresponding times on the other machine. In the case that processing and setup times on the first and second machines are proportionate, it is shown that the longest processing time (LPT) rule gives an optimal solution when only the first machine is subject to breakdowns, while the shortest processing time (SPT) rule yields an optimal solution when only the second machine suffers breakdowns.  相似文献   

5.
In this paper we develop an algorithm that determines the optimal times of releasing N jobs to an unreliable machine. The job processing times are assumed to be random and the machine is subject to random breakdowns. The objective is to minimize the cost incurred by jobs waiting in the system and utilizing the machine. The job flowtime distributions are first derived from which the average flowtimes and the machine completion time are calculated. Efficient computation of the average flowtimes are discussed in detail. The optimization methods and numerical examples are demonstrated.  相似文献   

6.
In this paper, we attempt to find a method for the optimization of production–inventory and product inspection policies for deteriorating production systems. Taking advantage of the nature of a deteriorating production system, a strategy would be not to inspect the first s items of the batch. Therefore, an inspection policy which disregards the first s (DTF-s) items of the batch is proposed. Under the DTF-s policy, we do not inspect the first s produced items but inspect only those items from the (s+1)th till the end of the production run. The objective of this study was the joint determination of the production lot size and the inspection policy s, resulting in a minimization of the expected average cost per unit time. Based on this model, the underlying conditions necessary for the existence of an optimal policy are given. Two commonly used inspection strategies, no inspection and full inspection are discussed. Under both inspection strategies, an optimal production–inventory lot is bounded by the traditional economic quantity. The case of full inspection is shown to be an extension of previously reported results. The option of investing in the process of quality improvement is also discussed. Finally, numerical examples are given to illustrate the method and its advantages in the conclusion.Scope and purposeThis paper considers the relationship between production, inventory and inspection in a deteriorating production system which may transit from the “in-control” state to the “out-of-control” state after a period of operation. Once the transition to the “out-of-control” state has occurred, it is assumed that some percentage of the items produced are defective or of substandard quality. However, in many cases, defects in a defective item can only be identified by an inspection process which carries an inspection cost. Those inspected items which are found to be defective are reworked at some cost before being shipped. On the other hand, defective items which are not inspected will be passed to the customer, incurring a much larger warranty cost. In order to operate such a system economically, tradeoffs among production setup, inventory, inspection and defective cost must be analyzed. Deterioration of the production system is an inherent process in all manufacturing industries. An understanding of the relationship among production, inventory and inspection for such systems will help managers to maintain efficient and economic control of operations.  相似文献   

7.
This paper considers a production-inventory system in which optimal batch sizes are determined for n products that are processed on m machines in a flow shop. The total cost function for this system is derived by considering three cost components: inventory cost in work-in-process, the final products inventory cost and the machine setup labor cost. In order to make the optimal solution realizable, it is assumed that all products have the same processing cycle time. The capacity constraint considered during the derivation of the optimal lot sizes acts as an additional constraint. Two heuristic algorithms are developed in order to obtain the optimal solution. An important part of these algorithms is the modeling of the recursive relations among the production waiting times and machine idle times. These algorithms are not only used in deriving the optimal solution but also in providing the production schedules. A numerical example is also demonstrated along with the conclusion and indication for future research.  相似文献   

8.
This paper formulates a production-inventory model to investigate the effects of partially integrated production and marketing policy of a manufacturing firm. Demand is assumed to be variable and dependent on the selling price and marketing cost. Also, different inventory costs are considered as interval valued. Shortages are permitted and partially backlogged with a rate dependent on the waiting time. Considering that manufacturing process generates defective units four possible cases have been identified and studied. Basically, the optimization problems (maximization problem for Marketing department and minimization problems for Production and Research & Development departments) have been formulated and solved. For solving these optimization problems, an efficient soft computing algorithm based on Particle Swarm Optimization-Constriction factor (PSO-CO) is proposed. In order to illustrate and validate the production-inventory model a numerical example is solved. Finally, a sensitivity analysis is done to study the effect of changes of different system parameters on optimal policies.  相似文献   

9.
This article investigates the impact of inspection policy and lead time reduction on an integrated vendor--buyer inventory system. We assume that an arriving order contains some defective items. The buyer adopts a sublot sampled inspection policy to inspect selected items. The number of defective items in the sublot sampling is a random variable. The buyer's lead time is assumed reducible by adding crash cost. Two integrated inventory models with backorders and lost sales are derived. We first assume that the lead time demand follows a normal distribution, and then relax the assumption about the lead time demand distribution function and apply the minimax distribution-free procedure to solve the problem. Consequently, the order quantity, reorder point, lead time and the number of shipments per lot from the vendor to the buyer are decision variables. Iterative procedures are developed to obtain the optimal strategy.  相似文献   

10.
A single production facility is dedicated to producing one product with completed units going directly into inventory. The unit production time is a random variable. The demand for the product is given by a Poisson process and is supplied directly from inventory when available, or is backordered until it is produced by the production facility. Relevant costs are a linear inventory holding cost, a linear backorder cost, and a fixed setup cost for initiating a production run. The objective is to find a control policy that minimizes the expected cost per time unit.The problem may be modeled as an M/G/1 queueing system, for which the optimal decision policy is a two-critical-number policy. Cost expressions are derived as functions of the policy parameters, and based on convexity properties of these cost expressions, an efficient search procedure is proposed for finding the optimal policy. Computational test results demonstrating the efficiency of the search procedure and the behavior of the optimal policy are presented.  相似文献   

11.
This paper presents the optimal flow control for a one-machine, two-product manufacturing system subject to random failures and repairs. The machine capacity process is assumed to be a finite state Markov chain. The problem is to choose the production rates so as to minimize the expected discounted cost of inventory/backlog over an infinite horizon. We first show that for constant demand rates and exponential failure and repair time distributions of the machine, the hedging point policy is optimal. Next, the hedging point policy is extended to non-exponential failure and repair time distributions models. The structure of the hedging point policy is parameterized by two factors representing the thresholds of involved products. With such a policy, simulation experiments are coupled with experimental design and response surface methodology to estimate the optimal control policy. Our results reveal that the hedging point policy is also applicable to a wide variety of complex problems (i.e. non-exponential failure and repair time distributions) where analytical solutions may not be easily obtained.  相似文献   

12.
In this paper, a production quantity model with random defective items, service level constraints and repair failure is studied. The existence of only one machine results in limited production capacity and partial backordering. The aim of this research is to determine the optimal cycle length, optimal production quantity and optimal backordered quantity of each product such that the expected total cost (holding, shortage, production, setup, defective items and repair costs) is minimized. Two numerical examples and sensitivity analysis are provided to illustrate the practical usage of the proposed method.  相似文献   

13.
An “economic production lot size” (EPLS) model for an item with imperfect quality is developed by considering random machine failure. Breakdown of the manufacturing machines is taken into account by considering its failure rate to be random (continuous). The production rate is treated as a decision variable. It is assumed that some defective units are produced during the production process. Machine breakdown resulting in idle time of the respective machine which leads to additional cost for loss of manpower is taken into account. It is assumed that the production of the imperfect quality units is a random variable and all these units are treated as scrap items that are completely wasted. The models have been formulated as profit maximization problems in stochastic and fuzzy-stochastic environments by considering some inventory parameters as imprecise in nature. In a fuzzy-stochastic environment, using interval arithmetic technique, the interval objective function has been transformed into an equivalent deterministic multi-objective problem. Finally, multi-objective problem is solved by Global Criteria Method (GCM). Stochastic and fuzzy-stochastic problems and their significant features are illustrated by numerical examples. Using the result of the stochastic model, sensitivity of the nearer optimal solution due to changes of some key parameters are analysed.  相似文献   

14.
In this article, I extend Balkhi ((2001), ‘On a Finite Horizon Production Lot Size Inventory Model for Deteriorating Items: An Optimal Solution’, European Journal of Operational Research, 132, 210–223), by considering a generalised mathematical production-inventory model for deteriorating items with partial backlogging. The demand, production and backlogging rates are assumed to be continuous and varying with time. The objective is to find the optimal production restarting and stopping time to keep the total relevant cost as low as possible. To ascertain the optimal solution exists, the conditions for the total relevant cost in the system which attains its global minimum are provided. In addition, based on the minimum total relevant cost, an alternative among the proposed four cases is also suggested. Finally, a numerical example and sensitivity analysis is illustrated and some management insights are presented.  相似文献   

15.
In several production systems, buffer stocks are built between consecutive machines to ensure the continuity of supply during interruptions of service caused by breakdowns or planned maintenance actions. However, in previous research, maintenance planning is performed individually without considering buffer stocks. In order to balance the trade-offs between them, in this study, an integrated model of buffer stocks and imperfective preventive maintenance for a production system is proposed. This paper considers a repairable machine subject to random failure for a production system by considering buffer stocks. First, the random failure rate of a machine becomes larger with the increase of the number of random failures. Thus, the renewal process is used to describe the number of random failures. Then, by considering the imperfect maintenance action reduced the age of the machine partially, a mathematical model is developed in order to determine the optimal values of the two decision variables which characterize the proposed maintenance strategy and which are: the size of the buffer stock and the maintenance interval. The optimal values are those which minimize the average total cost per time unit including maintenance cost, inventory holding cost and shortage cost, and satisfy the availability constraint. Finally, a heuristic procedure is used to solve the proposed model, and one experiment is used to evaluate the performance of the proposed methods for joint optimization between buffer stocks and maintenance policy. The results show that the proposed methods have a better performance for the joint optimization problem and can be able to obtain a relatively good solution in a short computation time.  相似文献   

16.
研究原材料价格波动下多级生产-库存系统的控制问题.所有的原材料价格、半成品加工成本、成品的生产成本、库存费用率和产品的需求率都随时间变动,为此,分析了最优采购、加工、生产决策的必要和充分条件,得到了在某些假设条件下的最优生产-库存策略为JIT(Just-in-time)采购、加工、生产策略,或者为在最开始阶段以最大能力进行采购、加工、生产活动的Bang-Bang策略.  相似文献   

17.
A batch production-inventory system consisting of multiple stages with an optimal policy of set-up time reduction and a fixed increment cost are discussed. The ratio of set-up time reduction as a decision variable under various cases of demand in the batch production-inventory model is considered. The ratio of set-up time reduction and lot size are solved simultaneously to obtain an optimal value of the total annual cost. A numerical example is presented to demonstrate the accuracy of the proposed method.  相似文献   

18.
This article considers the economic production run time problem with imperfect production processes and allowable shortages. The elapsed time until the production process shifts is assumed to be a fuzzy random variable, and fuzzy random total cost per unit time model is constructed. The expectation theory and signed distance are employed to transform the fuzzy random model into crisp model. An effective approximate algorithm is developed to search for the optimal production run length. Furthermore, numerical examples are provided to illustrate the results of proposed model.  相似文献   

19.
针对不可靠的生产过程,研究了生产故障时间为模糊随机变量且允许缺货的缺陷生产系统.建立含缺货费和模糊随机重修费的经济生产批量模型.基于可信性理论,建立其期望费用模型,揭示了费用函数的性质,并证明了使费用最小的最优生产时间的存在性和唯一性,从而确定了最优生产时间的上下界.基于此,设计了最优生产时间的二分法求解过程.最后通过算例验证了所提出模型的有效性,并分析了缺货费用、重修费用和缺陷产品比例对最优生产策略的影响.  相似文献   

20.
A machine produces an item at a constant rate, which is assumed to be greater than the demand rate, and the demand is assumed to be known and constant. While operating, the machine can fail, and upon failure it requires service. The machine times-to-failure and repair times are random, and during repairs, demand is backordered as long as the backordering level does not exceed a prescribed amount, after which demand is lost. By considering time to be of discrete units and the times-to-failure and repair times to be geometrically distributed, we model the production-inventory system as a Markov chain and develop an efficient algorithm to compute the potentials that are used to formulate the cost function. The model results are then compared to simulation results where time is treated as a continuous parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号