首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, rapid and sensitive method was developed for the selective separation and preconcentration of Ni(II) using dispersive liquid–liquid microextraction, by a yellow Schiff's base bisazanyl derivative, as a selective complexing agent. In this method, a mixture of 45 μL chloroform (extraction solvent) and 450 μL tetrahydrofuran (dispersive solvent) is rapidly injected by syringe into a 5 mL aqueous sample containing 3% (w/v) sodium chloride and an appropriate amount of the Schiff's base. As a result, a cloudy solution is formed by entire dispersion of the extraction solvent into the aqueous phase. After centrifuging for 5 min at 5000 rpm, the sedimented phase is directly injected into the electrothermal atomic absorption spectrometry for Ni(II) determination. Some important parameters, such as kind and volume of extraction and dispersive solvents, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor for the presented method is 138. The calibration curve was linear over a nickel concentration range of 10–50 ng mL? 1. The detection limit and relative standard deviation were 0.04 ng mL? 1 and 2.1%, respectively. The method was successfully applied to the extraction and determination of Ni(II) in different water samples.  相似文献   

2.
A novel multiwall carbon nanotubes (MWCNTs) modified carbon ionic liquid electrode (CILE) was fabricated and used to investigate the electrochemical behavior of norepinephrine (NP). MWCNTs/CILE was prepared by mixing hydrophilic ionic liquid, 1-methyl-3-butylimidazolium bromide (MBIDZBr), with graphite powder, MWCNTs, and liquid paraffin. The fabricated MWCNTs/CILE showed great electrocatalytic ability to the oxidation of NE. The electron transfer coefficient, diffusion coefficient, and charge transfer resistant (Rct) of NE at the modified electrode were calculated. Differential pulse voltammetry of NE at the modified electrode exhibited two linear dynamic ranges with slopes of 0.0841 and 0.0231 μA/μM in the concentration ranges of 0.3 to 30.0 μM and 30.0 to 450.0 μM, respectively. The detection limit (3σ) of 0.09 μM NP was achieved. This modified electrode exhibited a good ability for well separated oxidation peaks of NE and acetaminophen (AC) in a buffer solution, pH 7.0. The proposed sensor was successfully applied for the determination of NE in human urine, pharmaceutical, and serum samples.  相似文献   

3.
An ionic liquid–TiO2 nanoparticle modified carbon paste electrode (IL–TiO2/CPE) was used as a fast and sensitive tool for the investigation of the electrochemical oxidation of benserazide using voltammetry. This modified electrode has been fabricated using hydrophilic ionic liquid (n-hexyl-3-methylimidazolium hexafluoro phosphate) as a binder. The modified electrode offers a considerable improvement in voltammetric sensitivity toward benserazide, compared to the bare electrode. Using differential pulse voltammetry (DPV), the electrocatalytic oxidation peak current of benserazide shows a linear calibration curve in the range of 1.0–600 μmol L? 1 benserazide. The limit of detection was equal to 0.4 μmol L? 1. The relative standard deviation (RSD%) for eight successive assays of 10 μmol L? 1 benserazide was 1.1%. Finally, the proposed method was successfully applied to the determination of benserazide in real samples such as blood serum and urine.  相似文献   

4.
Polyacrylonitrile (PAN) and PAN/carbon nanotube (CNT) composite (99/1) based carbon fibers with an effective diameter of about 1 μm have been processed using island-in-a-sea bi-component cross-sectional geometry and gel spinning. PAN/CNT (99/1) based carbon fibers processed using this approach exhibited a tensile strength of 4.5 GPa (2.5 N/tex) and tensile modulus of 463 GPa (257 N/tex), while these values for the control PAN-based carbon fiber processed under the similar conditions were 3.2 GPa (1.8 N/tex) and 337 GPa (187 N/tex), respectively. Properties of these 1 μm diameter carbon fibers have been compared to the properties of the larger diameter (>6 μm) PAN and PAN/CNT based carbon fibers.  相似文献   

5.
The feasibility of the newly synthesized ionic associates L1 and L2 formed by ionic liquid [C4mim][PF6] and cationic dyes (malachite green and methylene blue) has been tested as a novel ionophore for the preparation of anion-selective polymeric membrane electrodes. The electrode exhibits Nernstian response and enhanced potentiometric selectivity towards [PF6]? compared to many other anions. The influence of some experimental parameters such as membrane composition, nature of plasticizer and amount of additive on the potential response of the [PF6]? sensor are investigated. Under the optimized conditions, the response slopes of the membrane electrodes towards [PF6]? are 59.7 ± 0.5 and 58.1 ± 0.5 mV/decade based on ionophore L1 and L2, respectively, in 1.0 × 10? 5–1.0 × 10? 1 or 1.0 × 10? 6–1.0 × 10? 1 mol/L concentration range. Interestingly, the optimized electrodes based on ionophores L1 and L2 also exhibit Nernstian response characteristics (60.3 ± 0.5 and 56.0 ± 0.5 mV/decade) for tetrafluoroborate anion [BF4]? in a wide concentration range. Thus, the proposed sensor has been used for the determination of [PF6]? and [BF4]? in aqueous ionic liquids samples and the solubility of the [PF6]? and [BF4]? based ionic liquids in water. The satisfactory results are obtained.  相似文献   

6.
A method for the speciation of chromium(III), chromium(VI) and determination of total chromium based on coprecipitation of chromium(III) with dysprosium hydroxide has been investigated and applied to tap water samples. Chromium(III) was quantitatively recovered by the presented method, while the recovery values for chromium(VI) was below 10%. The influences of analytical parameters including amount of dysprosium(III), pH, centrifugation speed and sample volume for the quantitative precipitation were examined. No interferic effects were observed from alkali, earth alkali and some transition metals for the analyte ions. The detection limits (k = 3, N = 15) were 0.65 μg/L for chromium(III) and 0.78 μg/L for chromium(VI). The validation of the presented method was checked by the analysis of certified reference materials.  相似文献   

7.
The transparent and flexible solid polymer electrolytes (SPEs) are fabricated from polyacrylonitrile–polyethylene oxide (PAN–PEO) copolymer. The formation of the copolymer is confirmed by Fourier-transform infrared spectroscopy (FTIR) and Gel permeation chromatography (GPC) measurements. The effects of acrylonitrile (AN) wt% content and Mn(PEO) on ionic conductivity are investigated by alternating current (ac) impedance spectroscopy. By controlling and adjusting the AN wt% content and doping PEO with high molecular weight, the ionic conductivity of SPEs is optimized. The ionic conductivity of PAN–PEO solid polymer electrolytes is found to be high 6.79 × 10−4 S cm−1 at 25 °C with an [EO]/[Li] ratio of about 10, and are electrochemically stable up to about 4.8 V versus Li/Li+. The conductivity and interfacial resistance remain almost constant even at 80 °C.  相似文献   

8.
In this paper a new electrochemical method was proposed for the determination of adenosine-5′-triphosphate (ATP) based on a chitosan (CTS) and graphene (GR) composite film modified carbon ionic liquid electrode (CTS–GR/CILE). CILE was fabricated by using ionic liquid 1-butyl-3-methylimidazolium dihydrogen phosphate ([BMIM]H2PO4) as the binder, which was further modified by GR and CTS composite. The modified electrode exhibited an excellent electrocatalytic activity toward the oxidation of ATP with the increase of the oxidation peak current and the decrease of the oxidation peak potential. The electrochemical parameters of ATP on CTS–GR/CILE were calculated with the electron transfer coefficient (α) as 0.329, the electron transfer number (n) as 2.15, the apparent heterogeneous electron transfer rate constant (ks) as 3.705 × 10? 5 s? 1 and the surface coverage (ΓT) as 9.33 × 10? 10 mol cm? 2. Under the optimal conditions the oxidation peak current was proportional to ATP concentration in the range from 1.0 × 10? 6 to 1.0 × 10? 3 M with the detection limit of 0.311 μM (S/N = 3). The proposed electrode showed excellent reproducibility, stability, anti-interference ability and further successfully applied to the ATP injection sample detection.  相似文献   

9.
Bayberry tannin (BT), a typical plant polyphenol, was grafted on collagen fiber (CF) in different mass ratios. Subsequently, the BT-grafted CF (BT-CF) was used as carrier and stabilizer to prepare BT-CF stabilized silver nanoparticles (BT-CF-AgNPs). Scanning Electron Microscopy image of BT-CF-AgNPs showed that the BT-CF-AgNPs was in ordered fibrous state. X-ray Diffraction patterns and Transmission Electron Microscopy images offered evidence that the Ag nanoparticles were well dispersed on BT-CF. Fourier Transform-Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) investigations revealed that the Ag NPs were stabilized by the phenolic hydroxyls and quinones of BT on CF through electron donation/acception interaction. Antibacterial experiments demonstrated that BT-CF-AgNPs exhibited high antibacterial activity. When cell suspensions of Escherichia coli and Staphylococcus aureus (104–105 cfu/mL) were contacted with BT0.19-CF-AgNPs (mass ratio of BT to CF = 0.19, conc. of Ag = 8 μg/mL) at 310 K under constant shaking, the number of cells went down to zero within 2 h. In addition, the minimal inhibitory concentration of BT0.19-CF-AgNPs against Escherichia coli, Staphylococcus aureus, Penicillium glaucum and Saccharomyces cerevisiae was 2 μg/mL, 4 μg/mL, 6 μg/mL and 12 μg/mL Ag, respectively. During recycling use, the antibacterial activity of BT0.19-CF-AgNPs against Escherichia coli can last for 5 cycles. These facts suggest that BT-CF-AgNPs can be used as a new and effective antibacterial agent.  相似文献   

10.
Electrostatic shielding zones made of electrode graphite powder were used as a new type of ionic and electronic current sinks. Because of the local elimination of the applied electric field, voltage and current within the zones, ions are led inside them and accumulate there. The current sinks were implemented in electrostatic shielding electrodialysis of a simulated nickel plating rinse water containing 100 mg L?1 nickel and electrodeionization of a 0.001 M NiSO4 solution with simultaneous electrochemical regeneration of the ion exchange resin beds. Pure water was obtained with a Ni2+ ion concentration of less than 0.1 mg L?1 at a flow rate of 2.02 × 10?4 dm3 s?1 diluate stream and a current density of 30 A m?2.  相似文献   

11.
Heavy solvents absorption appears to be very attractive in recovering of volatile organic compounds (VOCs) from industrial tail gas. Their high viscosities make good dispersion required but difficult to reduce mass transfer resistance. Microencapsulation techniques provide a candidate solution. In this paper, vapor pressures for toluene + poly(dimethylsiloxane) (PDMS) mixtures were measured at temperature ranging from 273.2 K to 343.2 K. Polyacrylonitrile (PAN) hollow microspheres, prepared by orifice dispersion plus solvent extraction method, was used to immobilize PDMS. The capacity was adjusted from 2.3 g to 9.3 g PDMS/g PAN by addition of cyclohexane in PDMS during solvent impregnation. The breakthrough curves of column packed with PDMS/PAN microcapsules were determined, indicating shapes close to ideality, high absorption efficiencies and considerable absorption capacities before breakthrough. The influence of operational temperature, concentration of feed and gas feed flow rate on the absorption process were investigated as well. A mathematical model, suitable for dilute gas absorption process, was used to simulate the breakthrough curves. This model has proved to be useful to fit curves and analyze the absorption kinetics of PDMS/PAN microcapsules column. After absorption, the column can be regenerated completely by gas stripping. Enrichment of toluene was founded by increasing desorption temperature. Through absorption and desorption by turns, the stability of PDMS/PAN microcapsules column was verified.  相似文献   

12.
TiO2-graphene/4-aminobenzenesulfonic acid composite film modified glassy carbon electrode (TiO2-GR/4-ABSA/GCE) was first employed for the simultaneous determination of dopamine (DA) and tryptophan (Trp). TiO2-GR/4-ABSA/GCE displayed excellent electrochemical catalytic activities toward the redox of DA and Trp. The cathodic peaks potentials of DA and Trp decreased significantly and their cathodic current peaks increased dramatically at TiO2-GR/4-ABSA/GCE. Differential pulse voltammograms (DPV) was used for the simultaneous determination of DA and Trp in their dualistic mixture. The peak separation between DA and Trp was large up to 177 mV. The calibration curves for simultaneous determination of DA and Trp were obtained in the range of 1–400 μM. The detection limits (S/N = 3) were 0.1 μM and 0.3 μM for DA and Trp, respectively. The present method was applied to the determination of DA and Trp in human serum samples.  相似文献   

13.
A solid phase reactor based on molecularly imprinted poly(iron (III) protoporphyrin-methacrylic acid-ethylene glycol dimethacrylate) (MIP–MAA) has been synthesized by bulk method and applied as an selective material for the epinephrine determination in the presence of hydrogen peroxide. In order to prove the selective behaviour of MIP, two blank polymers named non-imprinted polymer (NIP1), non-imprinted polymer in the absence of hemin (NIP2) as well as a poly(iron (III) protoporphyrin-4-vynilpyridine-ethylene glycol dimethacrylate) (MIP–4VPy) were synthesized. The epinephrine-selective MIP–MAA reactor was used in a flow injection system, in which an epinephrine solution (120 μL) at pH 8.0 percolates in the presence of hydrogen peroxide (300 μmol L? 1) through MIP–MAA. The oxidation of epinephrine by hydrogen peroxide is increased by using MIP–MAA, being the product formed monitored by amperometry at 0.0 V vs. Ag/AgCl. The MIP–MAA showed better selective behaviour than NIP1, NIP2 and MIP–4VPy, demonstrating the effectiveness of molecular imprinting effect. Highly improved response was observed for epinephrine in detriment of similar substances (phenol, ascorbic acid, methyl-l-DOPA, p-aminophenol, catechol, l-DOPA and guaiacol). The method provided a calibration curve ranging from 10 to 500 μmol L? 1 and a limit of detection of 5.2 μmol L? 1. Kinetic data indicated a value of maximum rate Vmax (0.993 μA) and apparent Michaelis–Menten constant of Kmapp(725.6 μmol L? 1). The feasibility of biomimetic solid reactor was attested by its successful application for epinephrine determination in pharmaceutical formulation.  相似文献   

14.
Polyacrylonitrile (PAN) nanofiber webs containing titanium dioxide (TiO2) were prepared via electrospinning. Either dimethyl formamide (DMF) or its mixture with small amount of water (3 and 5%w/w.) was employed to prepare 5%w/w.PAN/DMF or PAN/DMF/H2O solution, respectively. Introducing non-solvent water in PAN/DMF/H2O solution was attempted to induce phase separation, which may lead to formation of porous structure on nanofibers surface. Different amounts of TiO2 (1 to 3 wt.%) were added into PAN/DMF/(H2O) solutions and then electrospun into nanofiber webs. From SEM, nanofibers possessed rough surfaces and had averaged diameters in ranges of 170–430 nm., showing tendency to increase with amount of TiO2 and water. Porous structure on fiber surfaces was not clearly observed, which was suspected to be due to insufficient amount of water employed. Less homogeneity in polymer solution due to presence of TiO2 disfavored increasing water content higher than 5%w/w. EDS data confirmed presence of TiO2 in electrospun webs. From photocatalysis evaluation, webs containing 2 and 3 wt.% TiO2 showed good photocatalytic activity such that 80 percent of 10 ppm. methylene blue degraded in 24 hours. Slight increase in photocatalytic activity was observed in webs obtained from PAN/DMF/H2O solutions.  相似文献   

15.
Industrial applicable fine-line double printing and nickel plating method was applied to single crystalline silicon (c-Si) solar cells. As the finger widths decreased, the efficiency and short circuit current density (JSC) linearly increased. Although the increase of the JSC was caused by the reduction of shadowing loss due to the decrease of finger width, the fill factor (FF) was slowly decreased due to increase of contact resistance. The FF of the cells using the fine line was enhanced by using a double printing and nickel plating. c-Si solar cells with the dimensions of 12.5 cm × 12.5 cm, double printed finger width of 50 μm due to spreadability of paste, a finger spacing of 2.4 μm, and aluminum back surface field were fabricated, achieving an increase of JSC and efficiencies of up to about 0.62 mA/cm2 and 0.38% compared to a reference cell at 79.8% of the FF, respectively.  相似文献   

16.
Flower-like hierarchical nickel microstructures were prepared by a facile chemical reduction method requiring 4 h at temperature of 85 °C without any template or external magnetic field. Nickel (II) sulfate hexahydrate was used as nickel source and hydrazine hydrate acted as the reducing agent. XRD study confirmed the highly crystalline with face-centered cubic (fcc) phase. SEM images revealed that the individual flower-like microstructures have an average diameter of 1–2 μm and are composed of sword-like nanopetals growing radially from the core of the spherical particles. HRTEM image and SAED pattern of the single petal show that the lattice spacing is 0.203 nm corresponding to the (1 1 1) plane of fcc nickel and the growth orientation is along [0 1 1] direction. A rational formation process of nickel micro-flowers was proposed. Magnetic hysteresis measurements revealed that the hierarchical nickel microstructures possess ferromagnetic behavior with an enhanced coercivity value of about 203.3 Oe.  相似文献   

17.
A new sensor for the determination of mercury at μg ml?1 levels is proposed based on the adsorption of mercury vapor on single-walled carbon nanotubes (SWCNTs). The changes in the impedance of SWCNTs were monitored upon adsorption of mercury vapor. The adsorption behaviour of mercury on SWCNTs was compared with that on multi-walled carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs). Cold vapor of mercury was generated at 65 °C using Sn(II) solution as a reducing agent. The limit of detection was 0.64 μg ml?1 for Hg(II) species. The calibration curve for Hg(II) was linear from 1.0 to 30.0 μg ml?1. The relative standard deviation (RSD) of eight replicate analyses of 15 μg ml?1 of Hg(II) was 2.7%. The results showed no interfering effects from many foreign species and hydride forming elements. The system was successfully applied to the determination of the mercury content of different types of wastewater samples.  相似文献   

18.
(E)-2-(1-(4-hydroxy-2-oxo-2H-chromen-3-yl)ethylidene)hydrazinecarbothioamide (L) has been used to detect trace amounts of praseodymium ion in acetonitrile–water solution (MeCN/H2O) by fluorescence spectroscopy. The fluorescent probe undergoes fluorescent emission intensity enhancement upon binding to Pr3 + ions in MeCN/H2O (9/1:v/v) solution. The fluorescence enhancement of L is attributed to a 1:1 complex formation between L and Pr3 +, which has been utilized as the basis for selective detection of Pr3 +. The sensor can be applied to the quantification of praseodymium ion with a linear range of 1.6 × 10? 7 to 1.0 × 10? 5 M. The limit of detection was 8.3 × 10? 8 M. The sensor exhibits high selectivity toward praseodymium ions in comparison with common metal ions. The proposed fluorescent sensor was successfully used for determination of Pr3 + in water samples.  相似文献   

19.
Ni + W + Si coatings were prepared by nickel deposition from a bath containing a suspension of tungsten and silicon powders. These coatings were obtained at galvanostatic conditions, at the current density of jdep =  0.100 A cm 2 and at the temperature of 338 K. For determination of the influence of phase composition and surface morphology of these coatings on changes in the corrosion resistance, these coatings were modified in an argon atmosphere by thermal treatment at 1373 K during 1 h. A scanning electron microscope was used for surface morphology characterization of the coatings. The chemical composition of the coatings was determined by EDS and phase composition investigations were conducted by X-ray diffraction. It was found that the as-deposited coatings consist of a three-phase structure, i.e., nickel, tungsten and silicon. The phase composition for the Ni + W + Si coatings after thermal treatment is markedly different. The main peaks corresponding to Ni and W coexist with the new phases: NiW, NiWSi and a solid solution of W in Ni.Electrochemical corrosion resistance investigations were carried out in 5 M KOH, using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. On the basis of these investigations it was found that the Ni + W + Si coatings after thermal treatment are more corrosion resistant in alkaline solution than the as-deposited coatings. The reasons for this are a reduction in the amount of free nickel and tungsten, the presence of new phases (in particular polymetallic silicides), and a decrease of the active surface area of the coatings after thermal treatment.  相似文献   

20.
Biomorphic porous nanocrystalline-calcium titanate (SPCTO) was successfully prepared using the sol–gel method and with sorghum straw as the template. Characterization was conducted through XRD, SEM and FTIR. The ability of SPCTO to adsorb nickel ion in water was assessed. Elution and regeneration conditions, as well as the thermodynamics and kinetics of nickel adsorption, were also investigated. The result showed that the sorbent by the sol–gel template method was porous and has a perovskite structure with an average particle diameter of 26 nm. The nickel ion could be quantitatively retained at a pH value range of 4–8, but the adsorbed nickel ion could be completely eluted using 2 mol L? 1 HNO3. The adsorption capacity of SPCTO for nickel was found to be 51.814 mg g? 1 and the adsorption behavior followed a Langmuir adsorption isotherm and a pseudo-second-order kinetic model. The enthalpy change (ΔH) of the adsorption process was 33.520 kJ mol? 1. At various temperatures, Gibbs free energy changes (ΔG) were negative, and entropy changes (ΔS) were positive. The activation energy (Ea) was 25.291 kJ mol? 1 for the adsorption. These results demonstrate that the adsorption was an endothermic and spontaneous physical process. This same method has been successfully applied in the preconcentration and determination of nickel in water and food samples with good results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号