共查询到20条相似文献,搜索用时 15 毫秒
1.
Geopolymers prepared from a class C fly ash (CFA) and a mixed alkali activator of sodium hydroxide and sodium silicate solution were investigated. A high compressive strength was obtained when the modulus of the activator viz., molar ratio of SiO2/Na2O was 1.5, and the proper content of this activator as evaluated by the mass proportion of Na2O to CFA was 10%. The compressive strength of these samples was 63.4 MPa when they were cured at 75 °C for 8 h followed by curing at 23 °C for 28 d. In FTIR spectroscopy, the main peaks at 1036 and 1400 cm?1 have been attributed to asymmetric stretching of Al–O/Si–O bonds, while those at 747 cm?1 are due to the Si–O–Si/Si–O–Al bending band. The main geopolymeric gel and calcium silicate hydrate (C–S–H) gel co-exist and bond some remaining unreacted CFA spheres as observed in XRD and SEM–EXDA. The presence of gismondine (zeolite) was also observed in the XRD pattern. 相似文献
2.
Abstracts are not published in this journal 相似文献
3.
The hydration of Portland cement (PC) blended with a high amount of a siliceous fly ash (70% fly ash, 30% PC) has been examined. The fly ash contributes significantly to the long-term strength development, when compared to a reference sample with quartz powder. However the long setting time and the poor early strength prevent the use of such binders. Therefore the effect of different activators (sodium carbonate, potassium sodium silicate, potassium citrate and sodium oxalate) on the setting, the hydration kinetics and the strength development of the fly ash-PC blend has been investigated.The addition of the activators increases the pH and decreases thus the calcium concentrations in the pore solution, which leads to a faster reaction of alite and thus to early setting and increased early strength. On the long term, the high alkali concentrations lower the compressive strength and lead to a (partial) destabilization of ettringite.Sodium oxalate and potassium sodium silicate accelerate both the setting of the fly ash-PC blend and increase the early compressive strength. Furthermore, they show better compressive strengths at later ages compared to the other activators. Based on these findings, they can be considered as the most suitable accelerators among the investigated activators. 相似文献
4.
An experimental program was carried out to study the properties of self-compacting concrete (SCC) made with Class F fly ash. The mixes were prepared with five percentages of class F fly ash ranging from 15% to 35%. Properties investigated were self-compactability parameters (slump flow, J-ring, V-funnel, L-box and U-box), strength properties (compressive and splitting tensile strength), and durability properties (deicing salt surface scaling, carbonation and rapid chloride penetration resistance). 相似文献
5.
This paper presents the results of an experimental study on the fresh properties of the self-compacting lightweight concretes made with cold bond fly ash (FA) lightweight aggregates. Binary and ternary use of FA and silica fume (SF) blends have been investigated in the production of self-compacting cold bonded FA lightweight aggregate concretes (SCLWCs). A total of 9 SCLWC mixtures were proportioned having constant water-binder ratio of 0.35 and the total binder content of 550?kg/m3. The control mixture contained only Portland cement (PC) as the binder while the remaining mixtures incorporated binary and ternary blends of PC, FA, and SF. After mixing, the fresh properties of the SCLWC were tested for T 500 slump flow time, slump-flow diameter, V-funnel flow time and L-box height ratio. The fresh properties of SCLWCs with and without mineral admixtures were also evaluated by statistical technique, namely GLM-ANOVA. The results indicated that the combination use of FA and SF together decreased the slump flow time and V-funnel flow time. L-box height ratio, on the other hand, improved significantly. 相似文献
6.
This paper presents a comprehensive experimental study of thermal properties of various alkali-activated binders at ambient and elevated temperatures. The binders were prepared using alkali-activated low calcium fly ash/ground granulated blast-furnace slag at ratios of 100/0, 90/10, 50/50 and 0/100 wt%. These binders can be considered as a composite of solid, water and air. Accordingly, a three-phase model is applied to predict thermal conductivity of the binders at ambient temperature. At elevated temperatures, the Hashin–Shtrikman model is used to estimate the bounds of thermal conductivity for alkali-activated binders containing of fly ash. To validate the above models, a transient plane source measurement technique was applied to measure the thermal conductivity and heat capacity at temperatures ranging from 23 to 600 °C. Data generated is then utilised to develop analytical expressions for estimating thermal properties as a function of temperature. The simplified relationships can be used for estimating the fire resistance of structural elements made from alkali-activated cementitious materials. 相似文献
7.
The resistance of class C fly ash belite cement (FABC-2-W) to concentrated sodium sulphate salts associated with low level wastes (LLW) and medium level wastes (MLW) is discussed. This study was carried out according to the Koch and Steinegger methodology by testing the flexural strength of mortars immersed in simulated radioactive liquid waste rich in sulphate (48,000 ppm) and demineralised water (used as a reference), at 20 degrees C and 40 degrees C over a period of 180 days. The reaction mechanisms of sulphate ion with the mortar was carried out through a microstructure study, which included the use of Scanning electron microscopy (SEM), porosity and pore-size distribution and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated sulphate radioactive liquid waste (SSRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive ettringite inside the pores and an alkaline activation of the hydraulic activity of cement promoted by the ingress of sulphate. Accordingly, the microstructure was strongly refined. 相似文献
8.
Zabielska-Adamska K 《Journal of hazardous materials》2008,151(2-3):481-489
The use of power-industry wastes as a material for earthen structures depends on its compactibility. It has been confirmed that a fly ash/bottom ash mix compacted several times in Proctor's moulds are not representative. The relationship between dry density of solid particles and water content for re-used waste samples was determined. The re-compaction effect on grain-size distribution, density of solid particles, specific surface and sand equivalent of wastes was investigated. Tests were conducted on fly ash samples compacted by the Standard and Modified Proctor methods. Another aim of the paper was to investigate the influence of cement additions on the compactibility of a fly ash/bottom ash mix. Waste samples in the natural state and with different percentages of cement additions (2, 5 and 10%) were compacted by both impact compaction methods to obtain compactibility curves rhod(w). It was found that cement addition resulted in an increased rhod max value, while wopt decreased. Linear regression relationships for changes in compaction parameters after cement stabilisation are also given. 相似文献
9.
Zeolite from fly ash: synthesis and characterization 总被引:4,自引:0,他引:4
Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. The synthesized zeolite
was characterized using various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared
spectroscopy, BET method for surface area measurement etc. The synthesis conditions were optimized to obtain highly crystalline
zeolite with maximum BET surface area. The maximum surface area of the product was found to be 383 m2/g with high purity. The crystallinity of the prepared zeolite was found to change with fusion temperature and a maximum value
was obtained at 823 K. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite
available in the market. 相似文献
10.
Stabilization of phosphogypsum using class C fly ash and lime: assessment of the potential for marine applications 总被引:1,自引:0,他引:1
Phosphogypsum (PG, CaSO(4).H(2)O), a solid byproduct of phosphoric acid manufacturing, contains low levels of radium ((266)Ra), resulting in stackpiling as the only currently allowable disposal/storage method. PG can be stabilized with class C fly ash and lime for potential use in marine environments. An augmented simplex centroid design with pseudo-components was used to select 10 PG:class C fly ash:lime compositions. The 43cm(3) blocks were fabricated and subjected to a field submergence test and 28 days saltwater dynamic leaching study. The dynamic leaching study yielded effective calcium diffusion coefficients (D(e)) ranging from 1.15 x 10(-13) to 3.14 x 10(-13)m(2)s(-1) and effective diffusion depths (X(c)) ranging from 14.7 to 4.3mm for 30 years life. The control composites exhibited diametrical expansions ranging from 2.3 to 17.1%, providing evidence of the extent of the rupture development due to ettringite formation. Scanning electron microscopy (SEM), microprobe analysis showed that the formation of a CaCO(3) on the composite surface could not protect the composites from saltwater intrusion because the ruptures developed throughout the composites were too great. When the PG:class C fly ash:lime composites were submerged, saltwater was able to intrude throughout the entire composite and dissolve the PG. The dissolution of the PG increased the concentration of sulfate ions that could react with calcium aluminum oxides in class C fly ash forming additional ettringite that accelerated rupture development. Effective diffusion coefficients and effective diffusion depths alone are not necessarily good indicators of the long-term survivability of PG:class C fly ash:lime composites. Development of the ruptures in the composites must be considered when the composites are used for aquatic applications. 相似文献
11.
Batches of alpha-cordierite glass-ceramics, designated as GC-I and GC-II, containing 68 and 64 wt.% fly ash, respectively, were crystallized in the temperature range of 1125-1320 degrees C. The XRD (X-ray powder diffractometer) of the glass-ceramics show that alpha-cordierite became the dominant phase in GC-I and GC-II at 1200 degrees C. GC-I and GC-II, whose solid parts contain 74 and 78 vol.% alpha-cordierite and whose compressive strengths are 35 and 50 MPa, respectively, have the respective linear thermal expansion coefficients of 1.51x10(-6) and 1.43x10(-6)/ degrees C. The fly ash alpha-cordierite glass-ceramics can be employed as kiln furniture, honeycomb substrates for catalysts, and heat exchangers. 相似文献
12.
Mullite ceramics derived from coal fly ash 总被引:5,自引:0,他引:5
13.
Coal fly ash (CF) and synthetic coal fly ash aggregates (SCFAs) were evaluated as low-cost reactive media for the remediation of groundwater contaminated with Zn. The SCFAs were prepared by mixing CF, sodium silicate, and deionized (DI) water. Serial batch kinetic and static tests were conducted on both CF and SCFAs, under various conditions (i.e., pH, initial Zn concentration, reaction time, and solid dosage), using Zn(NO(3))(2).6H(2)O solutions. Serial column tests were also conducted on both CF and SCFAs. The final rather than the initial pH of the solution had a greater effect on the removal of Zn. At pH>7.0, the removal of Zn was due to precipitation, whereas at <7.0, the removal of Zn was due to adsorption onto the reactive media. The removal of Zn increased with increasing dosage of the reactive medium and decreasing initial Zn concentration. The results of the column and batch tests were comparable. Preferential flow paths were observed with CF, but not SCFA. The hydraulic conductivity of CF was more significantly decreased than that of SCFA with increasing dry density of the specimen. 相似文献
14.
Recovery of gallium and vanadium from gasification fly ash 总被引:3,自引:0,他引:3
Font O Querol X Juan R Casado R Ruiz CR López-Soler A Coca P García Peña F 《Journal of hazardous materials》2007,139(3):413-423
The Puertollano Integrated Coal Gasification Combined Cycle (IGCC) Power Plant (Spain) fly ash is characterized by a relatively high content of Ga and V, which occurs mainly as Ga2O3 and as Ga3+ and V3+ substituting for Al3+ in the Al-Si fly ash glass matrix. Investigations focused on evaluating the potential recovery of Ga and V from these fly ashes. Several NaOH based extraction tests were performed on the IGCC fly ash, at different temperatures, NaOH/fly ash (NaOH/FA) ratios, NaOH concentrations and extraction times. The optimal Ga extraction conditions was determined as 25 degrees C, NaOH 0.7-1 M, NaOH/FA ratio of 5 L/kg and 6 h, attaining Ga extraction yields of 60-86%, equivalent to 197-275 mg of Ga/kg of fly ash. Re-circulation of leachates increased initial Ga concentrations (25-38 mg/L) to 188-215 mg/L, while reducing both content of impurities and NaOH consumption. Carbonation of concentrated Ga leachate demonstrated that 99% of the bulk Ga content in the leachate precipitates at pH 7.4. At pH 10.5 significant proportions of impurities, mainly Al (91%), co-precipitate while >98% of the bulk Ga remains in solution. A second carbonation of the remaining solution (at pH 7.5) recovers the 98.8% of the bulk Ga. Re-dissolution (at pH 0) of the precipitate increases Ga purity from 7 to 30%, this being a suitable Ga end product for further purification by electrolysis. This method produces higher recovery efficiency than currently applied for Ga on an industrial scale. In contrast, low V extraction yields (<64%) were obtained even when using extreme alkaline extraction conditions, which given the current marked price of this element, limits considerably the feasibility of V recovery from IGCC fly ash. 相似文献
15.
Huang WJ Wu CT Wu CE Hsieh LH Li CC Lain CY Chu W 《Journal of hazardous materials》2008,156(1-3):118-122
This paper describes the solidification and stabilization of electroplating sludge treated with a high-performance binder made from portland type-I cement, municipal solid waste incineration fly ash, and lighting phosphor powder (called as cement-fly ash-phosphor binder, CFP). The highest 28-day unconfined compressive strength of the CFP-treated paste was 816 kg/cm(2) at a ratio of cement to fly ash to lighting phosphor powder of 90:5:5; the strength of this composition also fulfilled the requirement of a high-strength concrete (>460 kg/cm(2) at 28 days). The CFP-stabilized sludge paste samples passed the Taiwanese EPA toxicity characteristic leaching procedure test and, therefore, could be used either as a building material or as a controlled low-strength material, depending on the sludge-to-CFP binder ratio. 相似文献
16.
Characterization of fly ash from coal-fired power plants 总被引:3,自引:0,他引:3
X-ray analysis shows that mullite and silica are the major crystalline phases in fly ash. The method of known additions from X-ray diffraction techniques was used to calculate changes in the significant peak intensities of mullite and silica to determine their weight fractions in fly ash. This furthers the efforts of characterizing fly ash, which are being conducted to supplement the search for applications of this abundant material. The weight fractions of crystalline mullite and silica were determined to be 14.2 and 5.1 wt%, respectively. Thermal gravimetric studies as well as SEM and particle size analysis were also conducted on the fly ash. 相似文献
17.
18.
Different types of municipal solid waste incinerator (MSWI) fly and bottom ash were extracted by TCLP and PBET procedures. The biotoxicity of the leachate of fly ash and bottom ash was evaluated by Vibrio fischeri light inhibition test. The results indicate the following: (1) The optimal solid/liquid ratio was 1:100 for PBET extraction because it had the highest Pb and Cu extractable mass from MSWI fly ash. (2) The extractable metal mass from both fly ash and bottom ash by PBET procedure was significantly higher than that by TCLP procedure. (3) The metal concentrations of fly ash leachate from a fluidized bed incinerator was lower than that from mass-burning and mass-burning combined with rotary kiln incinerator. (4) The TCLP and PBET leachate from all MSWI fly ash samples showed biotoxicity. Even though bottom ash is regarded as a non-hazardous material, its TCLP and PBET leachate also showed biotoxicity. The pH significantly influenced the biotoxicity of leachate. 相似文献
19.
Municipal solid waste incinerator (MSWI) fly ash was regarded as a hazardous material because concentrations of TCLP leaching solution exceeded regulations. Previous studies have investigated the characteristics of thermally treated slag. However, the emissions of pollutant during the thermal treatment of MSWI fly ash have seldom been addressed. The main objective of this study was to evaluate the emission of Pb and PAHs from thermally co-treated MSWI fly and bottom ash process. The experimental parameters included the form of pretreatment, the proportion of bottom ash (bottom ash/fly ash, B/F=0, 0.1 and 1) and the retention time. The toxicity of thermally treated slag was also analyzed. The results indicated that (1) Pb emission occurred only in the solid phase and that PAHs were emitted from both solid and gas phases during thermal treatment process. (2) Washing pretreatment reduced not only the TCLP leaching concentration of Pb (from 15.75 to 1.67 mg/L), but also the emission of PAHs from the solid phase during thermal treatment process. (3) Adding bottom ash reduced the TCLP leaching concentration of thermally treated slag. (4) The concentration of Pb emission increased with retention time. (5) The thermal treatment reduced the toxicity of raw fly ash effectively, the inhibition ratio of raw fly ash and thermal treated slag were 98.71 and 18.35%, respectively. 相似文献
20.
Durability of class C fly ash belite cement in simulated sodium chloride radioactive liquid waste: influence of temperature 总被引:1,自引:0,他引:1
This work is a continuation of a previous durability study of class C fly ash belite cement (FABC-2-W) in simulated radioactive liquid waste (SRLW) that is very rich in sulphate salts. The same experimental methodology was applied in the present case, but with a SRLW rich in sodium chloride. The study was carried out by testing the flexural strength of mortars immersed in simulated radioactive liquid waste that was rich in chloride (0.5M), and demineralised water as a reference, at 20 and 40 degrees C over a period of 180 days. The reaction mechanism of chloride ions with the mortar was evaluated by scanning electron microscopy (SEM), porosity and pore-size distribution, and X-ray diffraction (XRD). The results showed that the FABC mortar was stable against simulated chloride radioactive liquid waste (SCRLW) attack at the two chosen temperatures. The enhancement of mechanical properties was a result of the formation of non-expansive Friedel's salt inside the pores; accordingly, the microstructure was refined. 相似文献