首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
Abstract

A study has been made of the erosion–corrosion behaviour of stainless steel (SS) 304 in tap water in the presence and the absence of solid particles. Water at ambient temperature impinged in various angles (15–90°) on specimen surfaces at different velocities (7·85–14 m s–1) and sand concentrations (0·43–2%). In this research, potentiodynamic, electrochemical impedance spectroscopy and weight loss measurements were used to study the damage mechanism and to estimate corrosion rate. The SEM micrographs and optical microscopy images were used to study the corrosion morphology. Under test conditions, protective passive film and non-protective film formations formed on SS 304 surface. It was found that maximum corrosion–erosion rate happened at the impact angles between 60 and 75°. The synergism effect was positive in all conditions and it was greater for the lower angles, the higher velocities and the higher solid contents.  相似文献   

2.
Cr–N coatings were deposited on austenitic stainless steel, X6CrNiTi18-10, by means of the cathodic arc evaporation method at three substrate temperatures: 200 °C, 350 °C and 500 °C. All coatings were found to have a composition of Cr(N), CrN and Cr2N. The substrate temperature was found to have an influence on the hardness and Young's modulus of the Cr–N coatings. The investigation of nanocrystalline Cr–N coatings resistance to cavitation was performed in a cavitation tunnel with a slot cavitator and tap water as the medium. The estimated cavitation resistance parameters of the coatings were the incubation period of damage and total mass loss. It was found that the optimal coating cavitation resistance was deposited at 500 °C. The incubation period for the 500 °C deposition coating was the same as that of the uncoated X6CrNiTi18-10 steel, but the total mass loss was significantly lower than on the uncoated specimen. The scanning electron microscope analysis indicated that the damage process of the Cr–N coating mainly originates from the plastic deformation of the steel substrate–hard coating system, which appears by “micro-folding” of the surface. An increase of tensile stresses at the top of micro-folds initiates micro-cracks and delamination of Cr–N coating. The results of the investigation and the analysis indicate that the factors mainly responsible for cavitation resistance of the steel substrate/hard coating system are resistant to plastic deformation of the total system and coating adhesion.  相似文献   

3.
《Wear》1986,110(2):151-168
The reciprocating self-wear of 316 stainless steel in air and at room temperature has been investigated in the load range 0.5–90 N. Above approximately 40 N the debris was metallic, indicating a severe wear mode. The wear volume was a linear function of the sliding distance and the specific wear rate was independent of load.Below the 40 N load, after an initial severe stage, a transition occurred with a decrease in wear rate by up to an order of magnitude. The specific wear rate in both wear stages decreased with decreasing load, showing no indication of saturating at low loads. The load dependence of the wear volume V per unit sliding distance was of the form V = kLn where n ≈ 1.8 for both pre- and post-transition stages.The transition and the decreasing specific wear rates with decreasing load are thought to be associated with an increasing proportion of asperity interactions' being elastic rather than involving plastic deformation. It is proposed that wear occurs by a multistage mechanism of metal transfer to form prows, prow oxidation in the post-transition stage and prow breakdown. The transition is associated with a change in the rate-limiting step. This is believed to be the metal transfer step in the pre-transitional stage and the prow breakdown step in the post-transitional stage. Only a tentative correlation could be made between the onset of a wear transition and changes either in the friction behaviour or in the appearance of oxide in the wear debris. The friction data suggest that wear in the post-transition stage is a cyclic process of prow breakdown, prow re-formation by further metallic transfer, prow embrittlement by oxidation leading once again to breakdown and the formation of oxide-containing wear debris.  相似文献   

4.
《Wear》2004,256(1-2):66-72
Cavitation erosion tests of three Fe–Mn–Si–Cr shape memory alloys were carried out at speed 34 and 45 m/s using a rotating disc rig, and their cavitation damage has been investigated by comparison with a referring 13Cr–5Ni–Mo stainless steel used for hydraulic turbine vanes. The research results proved that the cavitation erosion of the Fe–Mn–Si–Cr shape memory alloys is a failure of low cycle fatigue and fracture propagates along grain boundaries. After 48 h cavitation erosion the cumulative mass losses of the studied alloys at speed 45 m/s are more than theirs at speed 34 m/s; however, the effect of velocity on cavitation damage of the Fe–Mn–Si–Cr alloys is much lower than that of 13Cr–5Ni–Mo stainless steel. The cumulative mass loss of the 13Cr–5Ni–Mo stainless steel are 26.3 mg at speed 45 m/s and 3.2 mg at speed 34 m/s, and the mass losses of the Fe–Mn–Si–Cr alloys are within the range of 3.6–7.3 mg at speed 45 m/s and 2.0–4.1 mg at speed 34 m/s. The surface elasticity of the Fe–Mn–Si–Cr shape memory alloys is better than that of the 13Cr–5Ni–Mo stainless steel, and the effect of surface elasticity on cavitation damage increases with velocity. The excellent surface elasticity of the cavitation-induced hexagonal closed-packed (h.c.p.) martensite plays a key role in contribution of phase transformation to the cavitation erosion resistance of the Fe–Mn–Si–Cr shape memory alloys. The cavitation damage of the studied alloys at speed 45 m/s mainly depends on their surface elasticity, and the variation of 48 h cumulative mass loss (Δm) as a function of the elastic depth (he) can be expressed as Δm=2.695+[1371.94/(4(he−46.83)2+12.751)] with a correlation factor of 0.99345.  相似文献   

5.
The friction and wear behaviour of 316 stainless steel in CO2 has been investigated in the load range 8–50 N from 20 to 600°C. Wear transitions occurred at all temperatures but were load-dependent. At and below 300°C, wear transitions only took place at low loads, whereas above 300°C transitions were observed at all loads. The low temperature wear transition, representing an order of magnitude decrease in wear rate, was associated with a change in friction behaviour. The friction force across the specimen was initially widely fluctuating but after a time, which did not necessarily coincide with the wear transition, became much smoother. The smoother sliding is thought to indicate a trend to oxide-oxide contacts. At higher temperatures wear transitions result in a two orders of magnitude reduction in wear. The corresponding friction transition was similar to the low temperature friction change but also included a marked temporary drop in the coefficient of friction.Pits or troughs up to 450 μm deep were seen in wear scars above 400°C. It is proposed that isolated sections of grooves formed during the initial stages of wear become back-filled with loosely adhering oxide particles. These troughs are then further deepened, possibly by abrasive fretting action of the semi-fluid oxide material.  相似文献   

6.
Abstract

Low temperature plasma surface alloying with carbon (i.e. plasma carburising) of Stellite 21 Co–Cr alloy was conducted at temperatures from 400 to 500°C for 15 h in a gas mixture of 98 vol.-%H2 and 2 vol.-%CH4. The surface treated layers were characterised by XRD, SEM and microhardness tests. The corrosion and corrosive wear behaviour of the plasma carburised Stellite 21 Co–Cr alloy were studied respectively using electrochemical tests and well designed reciprocating wear tests in 3·5% NaCl solution. The results show that low temperature (≤460°C) plasma carburising can improve the corrosion resistance of Stellite 21 alloy; the corrosive wear resistance of Stellite 21 can be enhanced by up to three times; and the best corrosive wear resistance is achieved at the highest treating temperature (500°C). The detailed studies on the wear tracks indicate that the corrosive wear process was dependent on the individual wear and corrosion, as well as the synergetic effect.  相似文献   

7.
8.
Geometry of cutting edge has great influence on performance and reliability of modern precision cutting tools. In this study, two-dimensional finite element model of orthogonal cutting of Fe–Cr–Ni stainless steel has been built to optimize the geometric parameters of chamfered edge. A method to measure the chip curl radius has been proposed. The effect of cutting edge geometric parameters on tool stress and chip curl radius has been analyzed. Then, the chamfered edge parameters have been optimized based on numerical simulation results. It finds that, keeping the equal material removal rate, the optimal geometric parameters of chamfered edge for rough machining Fe–Cr–Ni stainless steel are that the rake angle is from 16° to 17°, and the chamfer length is from 60 to 70 μm. Small (large) rake angle combined with small (large) chamfer length is more reasonable to reduce the tool stress. When the length of land is approximately equal to undeformed chip thickness and the rake angle is larger than 15°, the chip curl radius is minimal. The groove type with large radio of width to depth should be used in the chip breaking based on the optimization results.  相似文献   

9.

The creep-fatigue behaviors of P92 steel under strain range of 0.3 %–0.5 % and test temperature of 600–650 °C was studied carefully in this paper. With the increase of temperature, the creep-fatigue life is significantly reduced, and more vulnerable to temperature than strain amplitude. In addition, the dislocation density decreases with increasing creep fatigue, and the martensite laths become coarser. Furthermore, the increase of strain amplitude leads to more significant secondary cracks and fatigue striation. The higher temperature causes much deeper and larger dimples. During the test, the growth and accumulation of precipitates inevitably lead to stress concentration, resulting in material fracture and destruction. Finally, the linear cumulative damage (LCD), the modified ductility exhaustion (MDE) and the frequency separation life (FSL) model are used to predict the creep-fatigue life of P92 steel, and it is found that the frequency separation life model had the highest prediction accuracy among the threes.

  相似文献   

10.
In this study, the erosion–corrosion performance of carbon steel was investigated in crude oil, reservoir water, and a mixture of both solutions at a range of applied potentials, velocities and impact angle. The application of such work is to upstream and downstream oilfield conditions, where the proportions of hydrocarbon and water may vary during the extraction process over time. Following exposure of the carbon steel in the crude oil, the extent of erosion was greater than that of corrosion, whilst in the reservoir water, the erosion and corrosion contributions were similar. Regimes of erosion–corrosion were proposed based on the variation in erosion behaviour at various impact angles and applied potentials in the environments studied. Mechanistic changes were identified on erosion–corrosion maps as a function of velocity and applied potential at various impact angles, indicating important transitions in erosion–corrosion processes in the oil/water environments.  相似文献   

11.
Pin-on-disc dry sliding wear tests have been carried out to study the wear behaviour of 10 vol% TiC and (Ti,W)C-reinforced Fe–17Mn austenitic steel matrix composites. The composites have been synthesized in situ by means of conventional melting and casting route. It has been observed that the abrasive wear resistance of the composites is higher than that of their unreinforced Fe–17Mn austenitic steel. Compared with the TiC-reinforced composite, the abrasive wear resistance of the (Ti,W)C-reinforced composite is better. The abrasive wear resistance and coefficient of friction of both reinforced and unreinforced materials decrease as the load increases.  相似文献   

12.
The tribological limits of martensitic AISI 52100 steel were determined by the application of a wear-mapping technique based on the statistical design of experiments. Wear measurements were conducted on a pin-on-disc system lubricated with a low-lubricity diesel fuel, with both pin and disc constructed of the same AISI 52100 steel. The test bench was equipped with a displacement transducer and an accurate temperature control of the samples temperature, enabling low wear rates to be measured in situ by the displacement transducer without being perturbed by thermal dilatation. By this method it is possible to measure wear rates on the order of a few nm/h. Moreover, the wear of the disc was evaluated at the end of each test by profilometry. A statistical model was fitted to the obtained results. Combining the findings of several surface characterisation methods, we identified two active wear mechanisms: tribocorrosion at low contact pressures (15 N/mm²) and adhesive wear at higher loads. This conclusion was corroborated by examinations of wear particles carried out by scanning electron microscopy and transmission electron microscopy.  相似文献   

13.
Slurry erosion behaviour of HVOF (High Velocity Oxy Fuel) and plasma sprayed coatings on CA6NM hydraulic turbine steel has been investigated at different levels of various parameters. The Cr2O3–50%Al2O3 composite powder was prepared and deposited on CA6NM steel samples to get the uniform thickness coatings. The surface roughness, porosity and microhardness of as-coated samples were measured. The as-coated samples were subjected to SEM/EDS analysis to evaluate the surface microstructure of the developed coatings. Erosion tests were performed on self made erosion test rig under hydro accelerated conditions. The study reveals that the velocity, impact angle and slurry concentration were the most significant parameters, influencing the erosion rate of these coatings. The average particle size had least affect on the erosion rate. HVOF-coated samples showed better corrosion resistance as compared to plasma-coated samples due to high hardness of HVOF-coated CA6NM samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号