首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Moving machine assemblies are generally designed to operate in full film lubrication regime to ensure high efficiency and durability of components. However, it is not always possible to ensure this owing to changes in operating conditions such as load, speed, and temperature. The overall frictional losses in machines are dependent on the operating lubrication regimes (boundary, mixed or full-film). The present work is thus aimed at investigating the role of different surface modification technologies on friction of a sliding bearing/roller tribopair both in boundary and mixed lubrication regimes. A special test rig comprising of two bearings was built for the experimental studies. Tribological tests were conducted in a wide speed range to enable studies in boundary and mixed lubrication regimes. The influence of application of different surface modification technologies on both the sliding bearing and the roller surfaces on friction has been studied. The rollers used in these studies were provided with five different coatings (hard DLCs and a soft self-lubricating coating). Additionally, two uncoated rollers having different surface roughness were also studied. Uncoated bearings were used in all tribopairs except two. These two bearings were coated with DLC and phosphate coatings respectively and uncoated rollers were the mating counterparts. Friction measurements were made on the new as well as the previously run-in surfaces. It was found that the rollers with self-lubricating coating resulted in lowest boundary friction closely followed by the rollers with the hardest DLC coatings. The DLC coating applied on to the bearing showed lower boundary friction after running-in. Mixed friction has been found to be mainly dependent on the surface topography characteristics of both the original and the run-in surfaces of bearings and rollers. The harder DLC coatings and the phosphated bearing showed the lowest mixed friction due to an efficient running-in of the bearing surface.  相似文献   

2.
High hardness, high elastic modulus, low friction characteristics, high wear and corrosion resistance, chemical inertness, and thermal stability are factors that make diamond-like carbon (DLC) coatings the subject of many studies. For the same reasons they also seem suitable for use in, amongst others, machine components and cutting tools. While most studies in the literature focus on the influence of coatings on wear and friction in boundary lubrication and pure sliding contacts, few studies can be found concerning rolling and sliding elastohydrodynamic lubrication (EHL) friction, especially in the mixed and full film regime. In this article tests are carried out in a Wedeven Associates Machine tribotester where an uncoated ball and disc pair is compared to the case of coated ball against uncoated disc, coated disc against uncoated ball, and coated disc against coated ball. The tests are conducted at two different temperatures and over a broad range of slide-to-roll ratios and entrainment speeds. The results are presented as friction maps as introduced in previous work (Bj?rling et al. in J Eng Tribol 225(7):671, 2011). Furthermore a numerical simulation model is developed to investigate if there is a possibility that the hard, thin DLC coating is affecting the friction coefficient in an EHL contact due to thermal effects caused by the different thermal properties of the coating compared to the substrate. The experimental results show a reduction in friction coefficient in the full film regime when DLC-coated surfaces are used. The biggest reduction is found when both surfaces are coated, followed by the case when either ball or disc is coated. The thermal simulation model shows a substantial increase of the lubricant film temperature compared to uncoated surfaces when both surfaces are coated with DLC. The reduction in friction coefficient when coating either only the ball or the disc are almost the same, lower than when coating both the surfaces but still higher than the uncoated case. The findings above indicate that it is reasonable to conclude that thermal effects are a likely cause for the decrease in coefficient of friction when operating under full film conditions, and in the mixed lubrication regime when DLC-coated surfaces are used.  相似文献   

3.
Diamond-like-carbon (DLC) coating of thickness 3 and 10 μm were developed with and without radical nitriding pretreatment on steel rollers and spur gear pair. The friction coefficient and wear amount were evaluated under sliding rolling contact condition in vacuum and under oil lubrication. Delamination of coatings was observed at the interface of the substrate. The wear resistance of coatings improved with the thickness of the coating. In vacuum both the roller and the gear pair of 10 μm coating thickness with radical nitriding showed identical wear behavior. The radical nitriding seemed to enhance the life of DLC coatings.  相似文献   

4.
R. Nilsson  F. Svahn 《Wear》2006,261(1):74-78
Damage caused by particles within rolling/sliding contacts can severely reduce the operational life of machinery such as roller bearings, gears and pumps.Abrasive wear of spherical roller thrust bearings has been studied using a stylus apparatus and scanning electron microscopy (SEM). Both a standard bearing and a bearing with rollers coated with metal mixed amorphous carbon (Me-C:H) were studied. The SEM measurements were performed systematically across the contact surfaces so that surfaces with gradually different contact situations could be examined. These measurements were compared to the measured wear depth of the components of the roller bearing. Also, the calculated contact conditions in terms of creep, contact size and surface separation have been related to the observed wear pattern at various locations.To attempt to understand the wear behaviour of the bearing with coated rollers, the coating as well as the material content of the surfaces were examined using both SEM and energy dispersive X-ray spectrometry (EDS). This revealed that the coating did not flake off but rather was scratched off.It is possible to link the abrasive wear behaviour to the contact conditions. It is crucial to understand this relationship when building a simulation model of abrasive wear.  相似文献   

5.
基于高速滚动轴承试验机对滚动轴承打滑蹭伤展开试验研究,获得不同工况参数下滚动轴承打滑蹭伤的临界转速;研究滚动轴承在打滑蹭伤临界转速下不同运行时间对滚动轴承磨损程度的影响,以及滚动轴承打滑蹭伤后,继续以更高转速运行对滚动轴承磨损程度的影响。结果表明:滚动轴承发生打滑蹭伤瞬间伴随着摩擦扭矩、温度及振动加速度的同步突增,且其在润滑不充分及轻载工况下出现打滑蹭伤时的临界转速更低;滚动轴承在打滑蹭伤临界转速下运转时间越长,磨损越严重,这可能是由于打滑蹭伤破坏滚动轴承表面光洁度,使摩擦因数增大从而导致磨损速度加快;滚动轴承打滑蹭伤后,继续以更高转速运转时易出现二次淬火烧伤,大大降低轴承使用寿命。  相似文献   

6.
DLC solid lubricant coatings on ball bearings for space applications   总被引:9,自引:0,他引:9  
The environment of space offers special challenges for the lubrication of components in sliding and rolling mechanisms. Hydrogenated diamond-like carbon (DLC) films are being studied as solid lubricant coatings to simultaneously fulfil specifications regarding wear resistance and low friction behaviour under ambient atmosphere and in vacuum.In this paper, the tribological behaviour of highly hydrogenated DLC coatings (50 at% hydrogen) is assessed. Coating composition was optimised on flat AISI 52100 steel substrates based on ball-on-disc tribotest results in air, vacuum and dry nitrogen environments. The developed DLC coatings can be tailored to yield ultra-low friction values in vacuum (μ=0.008). The average friction coefficient range obtained in humid air, dry nitrogen and vacuum for the range of applied loads were, respectively, 0.22 to 0.27, 0.02 to 0.03, and 0.007 to 0.013.New in this work is that optimised DLC coatings were applied to ball bearings for space applications. The torque and life tests of coated pairs of angular contact bearings in air revealed that relatively high bearing torques are generated which increase with time, but the amount of coating wear generated during in-air operation appears relatively light. In vacuum, low torques are generated after a prolonged running-in period. Low-torque life exceeds that observed for MoS2 by a factor of about two. It is concluded that, in contrast to MoS2 coated bearings, DLC-coated bearings for space applications might therefore be capable of undergoing in-air ground testing without too much disruption of the subsequent in-space performance.  相似文献   

7.
Diamond-like carbon (DLC) coatings are a class of materials and, depending on the deposition conditions and the tribological system, different outstanding tribological properties can be obtained. The most important subclasses of DLC are hydrogenated amorphous carbon (a-C:H) and hydrogen free tetrahedral amorphous carbon (ta-C). When DLC slides against a metal, the formation of the so-called transfer layer on the metallic counterpart can protect the metal from further wear. Adhesion and cohesion of this transfer layer is a critical issue and is also influenced by the environmental atmosphere including the relative humidity. When DLC is running against a hard and chemically inert counterface, such as sapphire, the formation of a transfer layer is not observed but low wear is still obtained. This is attributed to the lubricating properties of the graphitic wear residues. Due to its unique combination of properties, DLC is already used in different industrial applications such as magnetic storage media, diesel injection pumps, sliding bearings, car valve rockers, gears, tappets of racing motorcycles, laser barcode scanner windows in supermarkets, VCR head drums, textile industry parts, motor cycle forks, razor blades, etc. In medical applications, i.e. the coating of load bearing joints that slide against ultra high molecular weight polyethylene (UHMWPE), the different in vitro experiments apparently showed contradicting results, mainly due to the different experimental setups and especially the different liquids used as lubricants. However, when DLC slides against DLC in medical applications low wear rates could be demonstrated in different in vitro tests.  相似文献   

8.
The aim of this work was to investigate the potential of using hard physical vapour deposition (PVD) coatings on forming tools, as well as to determine the influence of plasma nitriding on the load-carrying capacity and wear resistance of coated tool surfaces. A load-scanning test rig was used for evaluation, where duplex treated cold work tool steel samples were loaded against soft austenitic stainless steel and hardened ball bearing steel, respectively. Four different coatings (TiN, TiB2, TaC and DLC) and two substrate treatments (hardening and plasma nitriding in two different gas mixtures) were included.Plasma nitriding alone significantly improved the friction, wear, and anti-sticking properties of the tool steel. PVD coating, and especially PVD coating of nitrided tool steel further improved the performance. Therefore, from the point of view of tool life as well as work peace surface quality, the DLC coating with its excellent anti-sticking properties and sufficiently good wear resistance represent the best solution for forming tool applications of austenitic stainless steel.  相似文献   

9.
The aim of this research work was to investigate tribological properties of low-friction DLC coatings when operating in helium atmosphere. Two commercial DLC coatings (a-C:H and Me-C:H) were included in the investigation and compared to reference PTFE-based coatings, normally used on components operating in helium. Coatings were deposited on hardened 100Cr6 bearing steel discs and tested against uncoated steel balls in low-load pin-on-disc contact configuration. Investigation was focused on the effect of substrate roughness (R a ?=?0.05?C0.2???m) and contact conditions, including contact pressure (150?C350?MPa) and sliding speed (0.2?C0.4?m/s) on the coefficient of friction of DLC coatings operating in helium. Results of this investigation show that for low-load sliding contact DLC coatings provide low friction in helium atmosphere, similar to soft PTFE-based coatings. At the same time DLC coatings investigated were found to substantially reduce wear of the coated surface. However, while the wear of the coated part has been more or less eliminated, application of DLC coating prolongs running-in and increases wear of the steel counter-part. Furthermore, also in helium atmosphere tribolgical behaviour of DLC coatings showed dependence on the coating type and contact conditions.  相似文献   

10.
In the present study, the tribological performance and compatibility of hydrogenated amorphous carbon coating (a-C:H) and metal-doped diamond-like carbon (DLC) coating (Me-C:H) with formulated oils under the boundary lubrication regime was investigated. The investigation employed ball-on-flat contact geometry in reciprocating sliding motion and six formulated oils (manual gearbox oil, automatic gearbox oil, hydraulic oil, compressor oil, and normal and high performance motor oil), with pure poly-alpha-olefin (PAO) oil used as a reference. In addition, DLC coatings behavior in diesel and gasoline fuel was evaluated.Compared with the uncoated steel surfaces a-C:H coatings give improved wear resistance in base PAO as well as in fully formulated oils and fuels. On the other hand, W-doped DLC coatings show the lowest steady-state friction under boundary lubrication, especially when using oils with high additive contents.  相似文献   

11.
Reducing friction is of utmost importance to improve efficiency and lifetime of many products used in our daily lives. Thin hard coatings like diamond-like carbon (DLC) have been shown to reduce friction in full-film-lubricated contacts. In this work, it is shown that contrarily to common belief, the friction reduction stems mainly from a thermal phenomenon and not only a chemical/surface interaction one. It is shown that a few micrometer-thin DLC coating can significantly influence the thermal behavior in a lubricated mechanical system. The presented simulations, validated by experiments, show that applying a thin DLC coating to metal surfaces creates an insulating effect that due to the increased liquid lubricant film temperature at the center of the contact, locally reduces lubricant viscosity and thus friction. The results of the investigation show that the addition of thin insulating layers could lead to substantial performance increases in many applications. On a component level, the contact friction coefficient in some common machine components like gears, rolling element bearings, and cam followers can potentially be reduced by more than 40 %. This will most likely open up the way to new families of coatings with a focus on thermal properties that may be both cheaper and more suitable in certain applications than DLC coatings.  相似文献   

12.
Increasing environmental awareness and demanding low energy consumption are of the top priorities for future vehicles manufacturing companies. This can be achieved by reducing wear and friction of engine components, so that its efficiency and lifetime can be increased. Surface treatments and coatings contribute to a better lubrication with oils and can participate significantly in achieving these goals. In this paper, diamond-like carbon (DLC) coating has been incorporated to the vehicle piston rings with different RF powers using magnetron sputtering method. The tribological properties like wear and coefficient of friction have been analysed using Pin-on-Disk tribometer. Micro-hardness and nano-hardness of the coated piston rings were characterized by micro-indentor and nano-indentation processes. Surface microstructure and elemental compositions were observed using Scanning Electron Microscopy. Experimental results demonstrated that the DLC coating shows lower wear and friction under similar operating conditions as compared to uncoated piston rings. Thus, usage of DLC coating has enhanced the engine life time. Silicon interlayer has also been applied between nitrided piston rings and DLC layer in order to have better coating adhesion. The properties of the interlayer are not studied but usage of it is found to protect DLC coating from delamination.  相似文献   

13.
Minute DLC particles may be generated during running of DLC-coated rolling elements and cause further damage on the subsequent running. Their hardness, which is a key parameter in wear is, however, impossible to measure by conventional means. Are they as hard as the original DLC coating or softened by frictional heat? This paper proposes to make use of the Raman intensity ratio (ID/IG) to infer hardness of the tiny DLC particles. The Raman spectroscopy ultilizing laser as the light source makes it suitable for measurements on micron-sized particles.  相似文献   

14.
In a cryogenic environment, components like bearings with interacting surfaces in relative motion (tribosystems) often generate undesired heat and experience high wear. Because the properties of conventional bearing materials like stainless steel cannot be applied to this temperature range, the PVD coating based on metal–metal pairs with better frictional properties must be employed. To test the suitability of the Ni–Cu–Ag-based PVD coatings of hybrid bearings for liquid rocket engine turbopumps and to obtain reliable coating material data in the extreme environment, the tribological behaviors of coatings under the cryogenic fluid (liquid oxygen and liquid nitrogen) and water lubricated conditions are studied, respectively. In the paper, the specimens are in a vibrocryotribometer with the ball-on-plane contact type, and various running conditions in terms of lubricants, contacting loading, and contacting velocity are examined. The simulated experiment for testing the actual tribological performance of Ni–Cu–Ag-based PVD coatings for hybrid bearings is tested. The results of the tests indicate that the coatings can be suitable for cryogenic tribosystems of turbopumps. In the cryogenic environment, the volume wear rate of coatings increases rapidly with the contacting loading, but 15 min later, the volume wear volume of coatings turns into 2.5–15×10−4 mm3. Besides, under the liquid oxygen condition in simulating the liquid rocket engine turbopumps environment, the friction coefficients are 0.03–0.1.  相似文献   

15.
The tribological behaviour in water-based environments has been studied for a tungsten carbide-doped DLC coating (WC/C) deposited by physical vapour deposition (PVD) on bearing steel. Several tribological test equipments have been used to characterise the wear rate, coefficient of friction and resistance to seizure of the coated system, in comparison with uncoated bearing steel surfaces. It was observed that the wear was decreased and the coefficient of friction reduced in pin-on-disc measurements for poor lubricants. Further, the resistance to seizure in the four-ball method was improved by a factor of approximately three. Results from Reichert measurements showed a decreased wear rate and also a very pronounced running-in behaviour of the coating for some water-based lubricants. It has been shown that the performance of tribological systems with water-based lubricants can be significantly improved with this type of DLC coating.  相似文献   

16.
Components used in magnetic storage systems (hard discs, tape heads and drums) are often very small and lightweight, and operate under very low loads (of the order of a few micrograms to a few milligrams). As a result, friction and wear processes occur on a nanometre scale and conventional tribological test methods and assessment tools are usually not appropriate. Furthermore, the assessment of the mechanical properties of the coatings or surface treatments used to protect these components from wear is complicated by the low thickness of the layers generally used. This paper details the problems associated with the assessment of the mechanical properties of thin diamond-like carbon coatings used to protect hard discs, tape heads and air bearings. Whereas thick coatings (>1 μm) are relatively easy to assess, even if the substrate has a low hardness and offers little support to the coating, there are many more problems when it comes to measuring the properties of the 5–10 nm layer on a hard disc. In many cases there is no plastic deformation of the coating which merely flexes and bends into the hole produced by plastic deformation of the substrate. Deformation of the coating is then limited to localised plasticity at the indenter edges, and/or fracture along the same edges and at the edge of the contact. The limits for use of Nanoindentation to assess the plasticity of the coating are discussed for such cases.  相似文献   

17.
A specially designed test system involving boundary lubricated roller bearings was used to study wear at low particle concentration levels. A separate oil system circulated the oil through the test bearings. The effects of self-generated contaminants from the system were studied. Even at very low concentration levels, self-generated contaminants can cause significant wear. The concentration of self-generated particles was very high during the running-in period. It is therefore important that the filtration be very efficient during this period. The experimental results show that filtration during run-in for 1 h with a 3 μm filter can reduce both the mass loss and the number of self-generated particles by a factor of 10. Furthermore, the results also show that while the bearings with standard rollers can have significant wear, those with coated rollers are at the same time almost unaffected by wear. Also, the number of particles generated in the contact was significantly less when using coated rollers. There were twice as many self-generated particles when using a standard bearing as those compared with a coated bearing.  相似文献   

18.
Hydrogenated diamond-like carbon (DLC) coatings were deposited using unbalanced magnetron sputtering (UBM) equipment with different hardnesses. Effects of coating hardness on tribological properties were investigated with tribo-tests under water lubrication. Results showed that the wear volume increased rapidly during the initial running-in process, but remained nearly constant after the running-in process. The ball wear rate increased as the hardness of the DLC coating increased when metals (stainless steel and brass) were used as counter parts. In contrast, the UHMWPE ball wear rate was independent of the DLC hardness. TEM analysis and nano-indentation measurements were conducted of the transfer layer on the counter bodies’ contact surfaces. The transfer layer consisted mainly of Fe, O and C. The low friction of DLC coating is attributed to this low hardness transfer layer, which acts as a boundary-lubricating layer with low shear strength.  相似文献   

19.
Compliant foil bearings offer many advantages over rolling element bearings in high-speed and high-temperature applications. However, implementation of foil bearings in these applications requires development of solid lubricant coatings that can survive the severe operating conditions encountered at high speeds and high temperatures. The objective of this paper is to present results on development of an advanced coating system for use with compliant foil bearings that permits higher operating speeds and temperatures. In order to evaluate the coating performance and to select the best coating combination for implementation, tests were conducted using a high-temperature, high-speed tribometer. In these tests, Inconel test substrates, representative of a portion of a foil bearing, were coated with several different KorolonTM coatings. The counterface disks were coated with a dense chrome, plasma sprayed PS304, hard chrome and KorolonTM 1350B. Each test was conducted for 500 start–stop cycles up to 810 °C foil pad temperature under 13.8 kPa normal loading.The test results confirmed the excellent tribological behavior of KorolonTM coatings for high-speed, high-temperature foil bearing applications. While the tribological behavior of KorolonTM coatings were determined to be a function of temperature, in most cases a minimum coefficient of friction less than 0.1 was observed during startup/shutdown periods. Based on the measured coefficient of friction and post-test visual inspection of the mating surfaces, the hard chrome coating proved unacceptable for high-temperature applications due to extensive surface cracking. The other disk coatings exhibited excellent tribological performance.Following these tests, a foil journal bearing was designed and a composite coating consisting of KorolonTM 1350A with an overcoat of KorolonTM 800 was applied to the bearing top foil; and a dense chrome coating was applied to the journal surface. The foil bearing and journal were installed in a 240-lb thrust turbojet engine and operated successfully to 54,000 rpm for over 70 start–stop cycles and 14 h.  相似文献   

20.
The effects of steel and ceramic rolling elements on protrusions from the raceway of a bearing were experimentally investigated. Such protrusions, which are normally caused by solid contaminants in the lubricating oil, create stress concentrations and lead to a reduction in the rolling contact fatigue life of the bearing. To compare the over-rolling effects of steel and ceramic rollers, experiments with steel discs with artificial dents on the surfaces were performed using a modified twin-disc machine. The results show that ceramic rollers can reduce the height of the protruded edge of an artificial dent more than steel rollers, which means that they are more effective in smoothing a damaged surface. The stresses at the contact were calculated by finite element analysis based on the deformed profile of the dented surface. The reduction in the stress level due to the smoothing effect of ceramic rollers is greater than that of steel rollers. According to the Lundberg–Palmgren bearing fatigue model, that smoothing ensures a significantly longer rolling contact fatigue life for a bearing. To put the idea into practice, a rolling ball bearing with two of its nine steel balls replaced with silicon nitride balls (referred to as a “partial hybrid bearing”) was run, together with a full steel bearing of the same model, on a bearing tester in a highly contaminated lubrication condition. The results show that the partial hybrid bearing suffers from less damage in terms of wear. The post-experiment examination of the damaged surface of the bearing raceway found that the surface of the partial hybrid bearing was smoother than that of the full steel bearing. This reveals the smoothing effect of the rolling ceramic element on the contaminant-damaged bearing surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号