首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a static single machine scheduling problem in which processing times are stochastic, due-dates and penalties for not completing jobs on time are deterministic, and an initial fixed idle time is allowed to be inserted before the processing of the first job begins on the machine. The objective is to determine the optimal sequence and the optimal initial idle time that jointly minimize the expected value of the sum of a quadratic cost function of idle time and the weighted sum of a quadratic function of job lateness. The problem is NP-hard to solve; however, we develop an exact algorithm based on a precedence relation structure among adjacent jobs. Our extensive computational results show that the algorithm can solve large problem instances quickly. We also demonstrate that the proposed problem is general in the sense that its special cases reduce to new stochastic models while its limiting cases simplify to some deterministic models.  相似文献   

2.
一类线性加工时间单机调度问题   总被引:7,自引:0,他引:7  
讨论一类线性加工时间单机调度问题.在这类问题中,工件具有相同的基本加工时间, 但每个工件的实际加工时间以其开工时间线性增长.对满足无延迟工件条件下极小化提前惩罚 和问题,满足最大完工时间限制条件下极小化资源消耗总量的问题和满足资源消耗总量限制条 件下极小化最大完工时间的问题,分别给出了最优算法.  相似文献   

3.

炼钢-连铸生产中会出现某一台转炉或精炼炉故障, 目前已有的重调度方法没有考虑多重精炼或只进行了仿真研究, 难以有效应用到具有多重精炼的钢厂, 而采用人工调整方式则容易导致炉次等待时间过长或断浇. 为此,通过引入炉次生产状态参数, 建立0-1 混合整数规划重调度模型, 提出由“未加工”炉次的设备指派、“未加工”炉次的开工时间优化和浇铸时间调整3 部分组成的重调度方法. 将该方法应用于某钢铁厂炼钢-连铸生产调度过程的实际工程应用验证了所提出方法的有效性.

  相似文献   

4.
We consider the single machine multi-operation jobs total completion time scheduling problem. Each job consists of several operations that belong to different families. In a schedule, each family of job operations may be processed in batches with each batch incurring a set-up time. A job completes when all of its operations have been processed. The objective is to minimize the sum of the job completion times. In the literature, the computational complexity of this problem is posed as open. We show that the problem is strongly NP-hard even when the set-up times are common and the processing time of each operation is 0 or 1.  相似文献   

5.
宫华  许可  孙文娟 《控制与决策》2023,38(7):1942-1950
研究二机流水车间生产运输协调调度问题,当工件在第1台机器加工完成后,由1台带有容量限制的运输车分批次运输到第2台机器加工,运输过程考虑工件尺寸约束,目标函数为最小化最大完工时间.考虑到源于不同客户的工件对机器及运输设备的竞争,以工件为博弈方,工件在生产运输过程中等待时间为策略,各工件完工时间为收益,建立非合作博弈模型.通过将问题转化为马尔可夫决策过程,设计线性逼近值函数的Q-learning算法求解纳什均衡调度.实验结果表明Q-learning算法求得的纳什均衡调度具有较好的全局最优性,从而能够在满足客户的利益下,提高企业的生产效率,实现客户与企业的双赢.  相似文献   

6.
7.
郭艳东  王庆  黄敏 《自动化学报》2013,39(12):2100-2110
研究了返工工件的单机重调度问题.在初始调度中初始工件带有不同的就绪时间,优化目标为最小化初始工件等待时间和;重调度时在满足每个初始工件最大等待时间约束情况下安排返工工件的生产,优化目标为最小化所有工件等待时间和.文中首先建立了RRSM (Rescheduling for reworks on single machine)问题模型,并证明其为NP难问题.然后,提出并证明了三个RRSM问题性质,进而根据诸性质设计了求解RRSM问题的动态插入启发式(Dynamic insert heuristic,DIH)算法.证明了应用DIH算法能在多项式时间内求得两种特殊RRSM问题的最优解. 最后,分析了DIH算法解的特点,给出了最优解的判定方法,并通过算例说明了DIH算法的有效性.  相似文献   

8.
In this paper, we consider two new types of the two-machine flowshop scheduling problems where a batching machine is followed by a single machine. The first type is that normal jobs with transportation between machines are scheduled on the batching and single machines. The second type is that normal jobs are processed on the batching machine while deteriorating jobs are scheduled on the single machine. For the first type, we formulate the problem to minimize the makespan as a mixed integer programming model and prove that it is strongly NP-hard. Furthermore, a heuristic algorithm along with a worst case error bound is derived and the computational experiments are also carried out to verify the effectiveness of the proposed heuristic algorithm. For the second type, the two objectives are considered. For the problem with minimizing the makespan, we find an optimal polynomial algorithm. For the problem with minimizing the sum of completion time, we show that it is strongly NP-hard and propose an optimal polynomial algorithm for its special case.  相似文献   

9.
In this paper, we introduce a new scheduling model in which deteriorating jobs and learning effect are both considered simultaneously. By deterioration and the learning effect, we mean that the actual processing time of a job depends not only on the processing time of the jobs already processed but also on its scheduled position. For the single-machine case, we show that the problems of makespan, total completion time and the sum of the quadratic job completion times remain polynomially solvable, respectively. In addition,we show that the problems to minimize total weighted completion time and maximum lateness are polynomially solvable under certain conditions.  相似文献   

10.
We consider preemptive online and semi-online scheduling of unit jobs on two uniformly related machines. Jobs are presented one by one to an algorithm, and each job has a rejection penalty associated with it. A new job can either be rejected, in which case the algorithm pays its rejection penalty, or it can be scheduled preemptively on the machines, in which case it may increase the maximum completion time of any machine in the schedule, also known as the makespan of the constructed schedule. The objective is to minimize the sum of the makespan of the schedule of all accepted jobs and the total penalty of all rejected jobs. We study two versions of the problem. The first one is the online problem where the jobs arrive unsorted, and the second variant is the semi-online case, where the jobs arrive sorted by a non-increasing order of penalties. We also show that the variant where the jobs arrive sorted by a non-decreasing order of penalties is equivalent to the unsorted one. We design optimal online algorithms for both cases. These algorithms have smaller competitive ratios than the optimal competitive ratio for the more general problem with arbitrary processing times (except for the case of identical machines), but larger competitive ratios than the optimal competitive ratio for preemptive scheduling of unit jobs without rejection.  相似文献   

11.
Scheduling with learning effects has attracted growing attention of the scheduling research community. A recent survey classifies the learning models in scheduling into two types, namely position-based learning and sum-of-processing-times-based learning. However, the actual processing time of a given job drops to zero precipitously as the number of jobs increases in the first model and when the normal job processing times are large in the second model. Motivated by this observation, we propose a new learning model where the actual job processing time is a function of the sum of the logarithm of the processing times of the jobs already processed. The use of the logarithm function is to model the phenomenon that learning as a human activity is subject to the law of diminishing return. Under the proposed learning model, we show that the scheduling problems to minimize the makespan and total completion time can be solved in polynomial time. We further show that the problems to minimize the maximum lateness, maximum tardiness, weighted sum of completion times and total tardiness have polynomial-time solutions under some agreeable conditions on the problem parameters.  相似文献   

12.
Using unrelated parallel machine scheduling to minimize the total earliness and tardiness of jobs with distinct due dates is a nondeterministic polynomial-hard problem. Delayed customer orders may result in penalties and reduce customer satisfaction. On the other hand, early completion creates inventory storage costs, which increase the total cost. Although parallel machines can increase productivity, machine assignments also increase the complexity of production. Therefore, the challenge in parallel machine scheduling is to dynamically adjust the machine assignment to complete the job within the shortest possible time. In this paper, we address an unrelated parallel machine scheduling problem for jobs with distinct due dates and dedicated machines. The objective is to dynamically allocate jobs to unrelated parallel machines in order to minimize the total earliness and tardiness time. We formulate the problem as a mixed integer linear programming (MILP) model and develop a modified genetic algorithm (GA) with a distributed release time control (GARTC) mechanism to obtain the near-optimal solution. A preliminary computational study indicates that the developed GARTC not only provides good quality solutions within a reasonable amount of time, but also outperforms the MILP model, a classic GA and heuristic approaches described in the literature.  相似文献   

13.
Job scheduling has always been a challenging task in modern manufacturing and the most real life scheduling problems which involves multi-criteria and multi-machine environments. In this research our direction is largely motivated by the adoption of the Just-In-Time (JIT) philosophy in parallel machines system, where processing times of jobs are controllable. The goal of this paper is to minimize total weighted tardiness and earliness besides jobs compressing and expanding costs, depending on the amount of compression/expansion as well as maximum completion time called makespan simultaneously. Jobs due dates are distinct and no inserted idle time is allowed after starting machine processing. Also each machine is capable of processing only some predetermined jobs and operations with probably different speeds. A Mixed Integer Programming (MIP) model is proposed to formulate such a problem and is solved optimally in small size instances. A Parallel Net Benefit Compression-Net Benefit Expansion (PNBCNBE) heuristic is then presented to acquire the optimal jobs set amount of compression and expansion processing times in a given sequence. To solve medium-to-large size cases, a proposed heuristic, two meta-heuristics and a hybrid technique are also employed. Experimental results demonstrate that our hybrid procedure is a proficient method and could efficiently solve such complicated problems.  相似文献   

14.
We revisit the classic problem of preemptive scheduling on m uniformly related machines. In this problem, jobs can be arbitrarily split into parts, under the constraint that every job is processed completely, and that the parts of a job are not assigned to run in parallel on different machines. We study a new objective which is motivated by fairness, where the goal is to minimize the sum of the two maximal job completion times. We design a polynomial time algorithm for computing an optimal solution. The algorithm can act on any set of machine speeds and any set of input jobs. The algorithm has several cases, many of which are very different from algorithms for makespan minimization (algorithms that minimize the maximum completion time of any job), and from algorithms that minimize the total completion time of all jobs.  相似文献   

15.
This paper provides a continuation of the idea presented by Yin et al. [Yin et al., Some scheduling problems with general position-dependent and time-dependent learning effects, Inform. Sci. 179 (2009) 2416-2425]. For each of the following three objectives, total weighted completion time, maximum lateness and discounted total weighted completion time, this paper presents an approximation algorithm which is based on the optimal algorithm for the corresponding single-machine scheduling problem and analyzes its worst-case bound. It shows that the single-machine scheduling problems under the proposed model can be solved in polynomial time if the objective is to minimize the total lateness or minimize the sum of earliness penalties. It also shows that the problems of minimizing the total tardiness, discounted total weighted completion time and total weighted earliness penalty are polynomially solvable under some agreeable conditions on the problem parameters.  相似文献   

16.
基于到达时间两台并行机上在线批调度   总被引:1,自引:0,他引:1  
考虑两台同构并行机上在线批调度问题.每个批具有不确定的到达时间,一旦机器可以利用,要在当前可以利用的批中选择出合适的批,并将其中的工件调度到机器上,且工件在加工过程中不允许中断.目标函数是使调度的最大完成时间最小.给出了一个批在线调度RBLPT算法,即选择当前批中加工时间之和最大的批按LPT 规则调度.另外,利用反证法,对算法的最坏情况进行了分析.  相似文献   

17.
We consider the problem of scheduling a maintenance activity and jobs on a single machine, where the maintenance activity must start before a given deadline and the maintenance duration increases with its starting time. We provide polynomial-time algorithms to solve the problems to minimize the makespan, sum of completion times, maximum lateness, and number of tardy jobs.  相似文献   

18.
No-wait flow shop production has been widely applied in manufacturing, where no waiting time is allowed between intermediate operations. However, minimization of makespan for no-wait flow shop production is NP-hard. In this paper, we propose an average idle time (AIT) heuristic to minimize makespan in no-wait flow shop production. First, we take the current idle times and future idle times into consideration, proposing an initial sequence algorithm, and then use the insertion and neighborhood exchanging methods to further improve solutions. Compared with three existing best-known heuristics, our AIT heuristic can achieve the smallest deviations of 0.23% from optimum, based on Taillard’s benchmarks and 600 randomly generated instances, in the same computational complexity.  相似文献   

19.
王秀英  冯惠  任志考  周艳平 《自动化学报》2016,42(11):1702-1710
以某钢厂多台转炉及多台精炼炉对多台连铸机的复杂生产线为研究对象,针对其调度过程涉及多设备、多目标、多约束等调度要素,且离散和连续变量混杂,采用常规建模方法难以满足现场对调度的精度及排产速度的需求问题,提出一种新型的两阶段优化建模方法.首先,证明了炉次从炼钢到连铸总等待时间最小的调度目标与该炉次在转炉开始作业时间最大是等价的事实,并以离散型的设备变量为决策变量,以转炉开始作业时间最大为动态规划最优指标,建立设备指派多阶段动态规划基本方程和设备指派优化模型;然后,以炉次在设备开始作业时间的连续型变量为决策变量,并将准时开浇的非线性调度指标转化成与之等价的线性优化目标,以在同一台连铸机上浇铸的炉次之间断浇的时间间隔最小、钢包在设备之间的冗余等待时间最小、提前与滞后理想开浇时间的时间间隔最小为目标,建立线性规划冲突解消模型.工业实验表明所提出两阶段优化建模方法在求解速度与求解精度均满足现场要求.  相似文献   

20.
This study examines the air blast freezing process of the frozen food industry, which processes multiple products with variable processing rates. The analysis depicts a new, single machine-scheduling problem in which the machine can process multiple jobs concurrently, within its capacity. The machine processes independent jobs arriving at various times while incurring interruption costs when allowing the jobs to enter or leave the machine. A mixed integer linear programming (MILP) model and a heuristic algorithm are developed for scheduling, the objectives of which are to minimize the costs associated with machine activities including that of waiting to load, waiting to unload and interruption time. The heuristic algorithm demonstrates the high potential of the computational time savings by obtaining the solution within one-fifth of the mathematical model computational time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号