首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A simple technique for the determination of the spatial and temporal transmit-receive field distributions of spherically focused high-frequency transducers is described. Instead of a point-like target, tungsten wires (line-like targets) with diameters less than the acoustic wavelength are used as pulse-echo targets. Spatial and temporal field quantities were determined for spherically focused transducers in the frequency range from 3 to 17 MHz, and a comparison with hydrophone measurements showed that both techniques yielded comparable results for the low-frequency transducer. However, for the higher frequency transducers, hydrophone measurements did not yield satisfactory results compared to the wire-target technique due to the hydrophone's aperture size, while the results from the wire-target technique were in general agreement with theory  相似文献   

2.
The design, fabrication, and evaluation of a high-frequency single-element transducer are described. The transducer has an annular geometry, with the thickness of the piezoelectric material increasing from the center to the outside. This single-element annular transducer (SEAT) can provide a broader frequency range than a conventional single-element transducer with a uniform thickness (single-element uniform transducer, or SEUT). We compared the characteristics of a SEAT and a SEUT. Both transducers used 36deg-rotated, Y-cut lithium niobate (LiNbO3) material. The SEAT had a diameter of 6 mm and comprised 6 subelements of equal area (electrically connected by a single electrode on each side) whose thickness ranged from 60 mum (center) to 110 mum (outside), which resulted in the center frequency of the subelements varying from 59.8 MHz to 25 MHz. The overall center frequency was 42.4 MHz. The annular pattern was constructed using an ultrasonic sculpturing machine that reduced the root-mean-square value of the surface roughness to 454.47 nm. The bandwidth of the SEAT was 19% larger than that of the SEUT. However, compared with the SEUT, the 2-way insertion loss of the SEAT was increased by 3.1 dB. The acoustic beam pattern of the SEAT was also evaluated numerically by finite-element simulations and experimentally by an ultrasound beam analyzer. At the focus (10.5 mm from the transducer surface), the -6 dB beam width was 108 mum. There was reasonable agreement between the data from simulations and experiments. The SEAT can be used for imaging applications that require a wider transducer bandwidth, such as harmonic imaging, and can be manufactured using the same techniques used to produce transducers with multiple frequency bands.  相似文献   

3.
A screen-printed PZT thick film with a final thickness of about 40 microm was deposited on a porous PZT substrate to obtain an integrated structure for ultrasonic transducer applications. This process makes it possible to decrease the number of steps in the fabrication of high-frequency, single-element transducers. The porous PZT substrates allow high acoustic impedance and attenuation to be obtained, satisfying transducer backing requirements for medical imaging. The piezoelectric thick films deliver high electromechanical performance, comparable to that of standard bulk ceramics (thickness coupling factor over 45%). Based on these structures, high-frequency transducers with a center frequency of about 25 MHz were produced and characterized. As a result, good sensitivity and axial resolution were obtained in comparison with similar transducers integrating a lead titanate (PT) disk as active material. The two transducers were integrated into a high-frequency imaging system, and comparative skin images are shown.  相似文献   

4.
Difficulty in obtaining well focused efficient ultrasound transducers has limited the development of new high frequency applications of B-mode imaging. This paper describes a method for fabricating high frequency (53 MHz) spherically focused lead zirconate titanate (PZT) transducers. A transducer is fabricated by bonding a malleable backing layer onto a thin plate of PZT and then pressing the plate into a spherically shaped well. The backing layer evenly distributes stresses across the material when it is pressed into the well. Local concentrations of stress which lead to fracture are avoided and the material can be deformed without macroscopic cracking. The characteristics of a 2 mm diameter 53 MHz PZT transducer with a 4 mm focal length are described. A lateral beam width of 68 μm and a 12 dB depth of field of 1.5 mm were obtained. The minimum two-way insertion loss of the system was -25 dB and the 6 dB bandwidth of the pulse echo response was 30%. An image of a resolution phantom and an in vivo skin image illustrate the excellent imaging characteristics of the transducer  相似文献   

5.
A broadband all-optical ultrasound transducer has been designed, fabricated, and evaluated for high- frequency ultrasound imaging. The device consists of a 2-D gold nanostructure imprinted on top of a glass substrate, followed by a 3 microm PDMS layer and a 30 nm gold layer. A laser pulse at the resonance wavelength of the gold nanostructure is focused onto the surface for ultrasound generation, while the gold nanostructure, together with the 30 nm thick gold layer and the PDMS layer in between, forms an etalon for ultrasound detection, which uses a CW laser at a wavelength far from resonance as the probing beam. The center frequency of a pulse-echo signal recorded in the far field of the transducer is 40 MHz with -6 dB bandwidth of 57 MHz. The signal to noise ratio (SNR) from a 70 microm diameter transmit element combined with a 20 microm diameter receive element probing a near perfect reflector positioned 1.5 mm from the transducer surface is more than 10 dB and has the potential to be improved by at least another 40 dB. A high-frequency ultrasound array has been emulated using multiple measurements from the transducer while mechanically scanning an imaging target. Characterization of the device's optical and acoustical properties, as well as preliminary imaging results, strongly suggest that all-optical ultrasound transducers can be used to build high-frequency arrays for real-time high-resolution ultrasound imaging.  相似文献   

6.
This paper discusses the design, fabrication, and testing of sensitive broadband lithium niobate (LiNbO/sub 3/) single-element ultrasonic transducers in the 20-80 MHz frequency range. Transducers of varying dimensions were built for an f# range of 2.0-3.1. The desired focal depths were achieved by either casting an acoustic lens on the transducer face or press-focusing the piezoelectric into a spherical curvature. For designs that required electrical impedance matching, a low impedance transmission line coaxial cable was used. All transducers were tested in a pulse-echo arrangement, whereby the center frequency, bandwidth, insertion loss, and focal depth were measured. Several transducers were fabricated with center frequencies in the 20-80 MHz range with the measured -6 dB bandwidths and two-way insertion loss values ranging from 57 to 74% and 9.6 to 21.3 dB, respectively. Both transducer focusing techniques proved successful in producing highly sensitive, high-frequency, single-element, ultrasonic-imaging transducers. In vivo and in vitro ultrasonic backscatter microscope (UBM) images of human eyes were obtained with the 50 MHz transducers. The high sensitivity of these devices could possibly allow for an increase in depth of penetration, higher image signal-to-noise ratio (SNR), and improved image contrast at high frequencies when compared to previously reported results.  相似文献   

7.
In dermatology, high-frequency ultrasound (HFUS) is used for high-resolution skin imaging. The conventional B-scan type approach is to perform lateral scans perpendicular to the direction of sound propagation. Ultrasound spatial compounding enables improvement of the image contrast, suppression of speckle and noise, and reduction of imaging artifacts in comparison with conventional B-mode imaging, but it has not yet found its way into HFUS skin imaging applications. In this paper, the potential of HFUS spatial compounding for skin imaging is systematically evaluated. A new HFUS system with a sophisticated scanner for limited-angle (up to +/-40 degrees) spatial compound imaging was developed and implemented. Echo signals are acquired using a 20 MHz spherically focused single-element transducer with an axial and lateral resolution of 69 mum and 165 mum, respectively, in the focus. A calibration scheme for the estimation of unknown system parameters and precise image reconstruction has been developed. The implemented system has been evaluated using measurements of geometrically well-defined structures, speckle phantoms, and in vivo measurements. The results show the advantage of the proposed spatial compound skin imaging concept compared with conventional B-mode imaging in terms of image contrast, isotropy, and independence from the orientation of surfaces.  相似文献   

8.
We report the development of a high-frequency (30-50 MHz), real-time ultrasonic imaging system for cardiac imaging in mice. This system is capable of producing images at 130 frames per second (fps) with a spatial resolution of less than 50 microm. A novel mechanical sector probe was developed that utilizes a magnetic drive mechanism and custom-built servo controller for high speed and accuracy. Additionally, a very light-weight (< 0.28 g), single-element transducer was constructed and used to reduce the mass load on the motor. The imaging electronics were triggered according to the angular position of the transducer in order to compensate for the varying speed of the sector motor. This strategy ensured the production of equally spaced scan lines with minimal jitter. Wire phantom testing showed that the system axial and lateral resolutions were 48 microm and 72 microm, respectively. In vivo experiments showed that high-frequency ultrasonic imaging at 130 fps is capable of showing a detailed depiction of a beating mouse heart.  相似文献   

9.
Two phantoms have been constructed for assessing performance of high-frequency ultrasound imagers. They also allow for periodic quality assurance tests and training technicians in the use of higher-frequency scanners. The phantoms contain eight blocks of tissue-mimicking material; each block contains a spatially random distribution of suitably small anechoic spheres having a small distribution of diameters. The eight mean sphere diameters are distributed from 0.10 to 1.09 mm. The two phantoms differ primarily in terms of the frequency dependence of the backscatter coefficient of the background material. Because spheres have no preferred orientation, all three (spatial) dimensions of resolution contribute to sphere detection on an equal basis; thus, the resolution is termed 3-D. Two high-frequency scanners are compared. One employs single-element (fixed focus) transducers (25 and 55 MHz), and the other employs variable focus linear arrays (20, 30, and 40 MHz). The depth range for detection of spheres of each size is determined corresponding to determination of 3-D resolution as a function of depth. As expected, the single-element transducers are severely limited in useful imaging depth ranges compared with the linear arrays. In this preliminary report, only one human observer analyzed images.  相似文献   

10.
Focused ultrasound surgery (FUS) is usually based on frequencies below 5 MHz-typically around 1 MHz. Although this allows good penetration into tissue, it limits the minimum lesion dimensions that can be achieved. In this study, we investigate devices to allow FUS at much higher frequencies, in principle, reducing the minimum lesion dimensions. Furthermore, FUS can produce deep-sub-millimeter demarcation between viable and necrosed tissue; high-frequency devices may allow this to be exploited in superficial applications which may include dermatology, ophthalmology, treatment of the vascular system, and treatment of early dysplasia in epithelial tissue. In this paper, we explain the methodology we have used to build high-frequency high-intensity transducers using Y-36°-cut lithium niobate. This material was chosen because its low losses give it the potential to allow very-high-frequency operation at harmonics of the fundamental operating frequency. A range of single-element transducers with center frequencies between 6.6 and 20.0 MHz were built and the transducers' efficiency and acoustic power output were measured. A focused 6.6-MHz transducer was built with multiple elements operating together and tested using an ultrasound phantom and MRI scans. It was shown to increase phantom temperature by 32°C in a localized area of 2.5 x 3.4 mm in the plane of the MRI scan. Ex vivo tests on poultry tissue were also performed and shown to create lesions of similar dimensions. This study, therefore, demonstrates that it is feasible to produce high-frequency transducers capable of high-resolution FUS using lithium niobate.  相似文献   

11.
A method for the primary calibration of hydrophones in the frequency range up to 60 MHz is described. The current National Physical Laboratory (NPL) primary standard method of calibrating ultrasonic hydrophones from 500 kHz to 20 MHz is based on optical interferometry. The acoustic field produced by a transducer is detected by an acoustically transparent but optically reflecting pellicle. Optical interferometric measurements of pellicle displacement at discrete frequencies in tone-burst fields are converted to acoustic pressure, and the hydrophone for calibration is substituted at the same point, allowing sensitivity in volts per pascal to be obtained directly. For calibrations up to 60 MHz, the interferometer is capable of measuring the displacement of the pellicle as a function of frequency in a harmonically rich nonlinear field up to and including the 12th harmonic of the shocked field generated by a 5 MHz focusing transducer, allowing hydrophones to be calibrated by substitution in the same field. Sources of uncertainty in the new method have been investigated. Best combined random and systematic uncertainties at the 95% confidence level for the new method are 7% at 20 MHz, 11% at 40 MHz, and 16% at 60 MHz.  相似文献   

12.
基于多孔聚丙烯铁电驻极体薄膜系统研制了平面型和球型聚焦空气耦合超声波换能器。平面型换能器孔径为20mm,两个球型聚焦换能器的孔径和焦距分别为20mm和35mm、30mm和40mm。使用激光干涉仪测得了三个换能器作为发射器工作时的带宽和谐振频率,并且将在脉冲回波模式下测得的换能器作为接收机工作时的响应与激光干涉仪测试结果进行比较。最后选择孔径为20mm的球型聚焦换能器,在脉冲回波模式下对不同直径孔的聚乙烯阶梯楔进行扫描成像。  相似文献   

13.
High-frequency transducers, up to 35-50 MHz, are widely used in ophthalmic echography to image fine eye structures. Phased-array techniques are not practically applicable at such a high frequency, due to the too small size required for the single transducer element, and mechanical scanning is the only practical alternative. At present, all ophthalmic ultrasound systems use focused single-element, mechanically scanned probes. A good probe positioning and image evaluation feedback requires an image refresh-rate of about 15-30 frames per second, which is achieved in commercial mechanical scanning probes by using electromagnetic motors. In this work, we report the design, construction, and experimental characterization of the first mechanical scanning probe for ophthalmic echography based on a small piezoelectric ultrasound motor. The prototype probe reaches a scanning rate of 15 sectors per second, with very silent operation and little weight. The first high-frequency echographic images obtained with the prototype probe are presented.  相似文献   

14.
The free-field transmitting voltage response at the pressure focus of a spherically focusing transducer was defined and calibrated based on the reciprocity theorem of a free-field spherically focused acoustic wave. The acoustic power, the radiation conductance, and the pressure at the pressure focus were derived and measured accordingly from the transmitting current response on the imaginary mirror symmetric spherical surface of the radiating surface. A miniature hydrophone was calibrated by the self-reciprocity of the spherically focusing source. Comparison results show that the measured acoustic power deviation between the reciprocity method and the radiation force balance method are within +/- 5% for two air-backed focusing transducers at 1.53 MHz and 5.27 MHz, respectively, and the maximum deviation of a hydrophone calibration between the new method and the free-field plane wave reciprocity method is within 1.4 dB in the frequency range from 1 MHz to 2 MHz in experiments.  相似文献   

15.
Ultrasonic transducers using polyurea piezoelectric thin film are studied in this paper. Aromatic polyurea thin films, prepared by vapor deposition polymerization, have useful characteristics for use as an ultrasonic transducer. This paper presents the fabrication and experimental evaluation of ultrasonic transducers formed using polyurea films. First, the vapor deposition polymerization process using two monomers is briefly reviewed, and the temperature conditions for higher piezoelectric constants are explored. Second, in order to test the fundamental characteristics of this material as a high-frequency, ultrasonic transducer, a polyurea film of 2.5 microm thickness was deposited on a silicon substrate. In the pulse/echo experiment results, a resonant frequency of about 100 MHz was observed. Third, we fabricated a concave point focus transducer and a cylindrical line focus transducer. To examine the performances of the focus transducers, two-dimensional images of a coin and V(z) curve measurements for an aluminum surface were demonstrated.  相似文献   

16.
The spatial resolution of high-frequency ultrasound (HFU, >20 MHz) imaging systems is usually determined using wires perpendicular to the beam. Recently, two tissue-mimicking phantoms (TMPs) were developed to estimate three-dimensional (3-D) resolution. Each TMP consists of nine 1-cm-wide slabs of tissue-mimicking material containing randomly distributed anechoic spheres. All anechoic spheres in one slab have the same dimensions, and their diameter is increased from 0.1 mm in the first slab to 1.09 mm in the last. The scattering background for one set of slabs was fabricated using 3.5-μm glass beads; the second set used 6.4-μm glass beads. The ability of a HFU system to detect these spheres against a speckle background provides a realistic estimation of its 3-D spatial resolution. In the present study, these TMPs were used with HFU systems using single-element transducers, linear arrays, and annular arrays. The TMPs were immersed in water and each slab was scanned using two commercial imaging systems and a custom HFU system based on a 5-element annular array. The annular array had a nominal center frequency of 40 MHz, a focal length of 12 mm, and a total aperture of 6 mm. A synthetic-focusing algorithm was used to form images with an increased depth-of-field. The penetration depth was increased by using a linear-chirp signal spanning 15 to 65 MHz over 4 μs. Results obtained with the custom system were compared with those of the commercial systems (40-MHz probes) in terms of sphere detection, i.e., 3-D spatial resolution, and contrast-to-noise ratio (CNR). Resulting B-mode images indicated that only the linear-array transducer failed to clearly resolve the 0.2-mm spheres, which showed that the 3-D spatial resolution of the single-element and annular-array transducers was superior to that of the linear array. The single-element transducer could only detect these spheres over a narrow 1.5 mm depth-of-field, whereas the annular array was able to detect them to depths of at least 7 mm. For any size of the anechoic spheres, the annular array excited by a chirp-coded signal provided images of the highest contrast, with a maximum CNR of 1.8 at the focus, compared with 1.3 when using impulse excitation and 1.6 with the single-element transducer and linear array. This imaging configuration also provided CNRs above 1.2 over a wide depth range of 8 mm, whereas CNRs would quickly drop below 1 outside the focal zone of the other configurations.  相似文献   

17.
Optical generation of ultrasound is a promising alternative to piezoelectricity for high-frequency arrays. An array element is defined by the size and location of a laser beam focused on a suitable surface. Optical generation using the thermoelastic effect has traditionally suffered from low conversion efficiency. We previously demonstrated an increase in conversion efficiency of nearly 20 dB with an optical absorbing layer consisting of a mixture of polydimethylsiloxane (PDMS) and carbon black spin coated onto a glass microscope slide. Radiation pattern measurements with an 85 MHz spherically focused transducer indicated an array element size of 20 /spl mu/m. These measurements lacked the spatial resolution required to reveal fine details in the radiated acoustic field. Here we report radiation pattern measurements with a 5-/spl mu/m spatial sampling, showing that the radiated acoustic field is degraded by leaky Rayleigh waves launched from the PDMS/glass interface. We demonstrate that replacing the glass with a clear PDMS substrate eliminates the leaky Rayleigh waves, producing a broad and smooth radiation pattern suitable for a two-dimensional (2-D) phased array operating at frequencies greater than 50 MHz.  相似文献   

18.
This paper discusses the fabrication and characterization of a single-element ultrasonic transducer with a lead-free piezoelectric active element. A piezoelectric ceramic with composition of 0.88Bi(0.5)Na(0.5)TiO(3)-0.08Bi(0.5)K(0.5)TiO(3)- 0.04Bi(0.5)Li(0.5)TiO(3) was chosen as the active element of the transducer. This composition exhibited a thickness coupling coefficient (kt) of 0.45, a dielectric constant of 440 (at 1 kHz), and a longitudinal piezoelectric coefficient (d(33)) of 84 pC?N(-1). To make the transducer, the ceramic was sandwiched between an epoxy-tungsten backing layer and a silver epoxy matching layer. An epoxy lens was also incorporated into the transducer?s design to focus the ultrasound beam. The focused transducer with a center frequency of about 23 MHz demonstrated a -6-dB bandwidth of 55% and an insertion loss of -32 dB; the -20-dB pulsed length was measured to be 150 ns. A phantom made of copper wires (30 μm in diameter) was utilized to investigate the imaging capability of the transducer. The results indicated that the fabricated transducer, with a lateral resolution of 260 μm and a relatively high depolarization temperature, could be considered as a candidate for replacement of lead-based ultrasonic transducers.  相似文献   

19.
A novel pulse compression technique is developed that improves the axial resolution of an ultrasonic imaging system and provides a boost in the echo signal-to-noise ratio (eSNR). The new technique, called the resolution enhancement compression (REC) technique, was validated with simulations and experimental measurements. Image quality was examined in terms of three metrics: the eSNR, the bandwidth, and the axial resolution through the modulation transfer function (MTF). Simulations were conducted with a weakly-focused, single-element ultrasound source with a center frequency of 2.25 MHz. Experimental measurements were carried out with a single-element transducer (f/3) with a center frequency of 2.25 MHz from a planar reflector and wire targets. In simulations, axial resolution of the ultrasonic imaging system was almost doubled using the REC technique (0.29 mm) versus conventional pulsing techniques (0.60 mm). The -3 dB pulse/echo bandwidth was more than doubled from 48% to 97%, and maximum range sidelobes were -40 dB. Experimental measurements revealed an improvement in axial resolution using the REC technique (0.31 mm) versus conventional pulsing (0.44 mm). The -3 dB pulse/echo bandwidth was doubled from 56% to 113%, and maximum range sidelobes were observed at -45 dB. In addition, a significant gain in eSNR (9 to 16.2 dB) was achieved.  相似文献   

20.
We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号