首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
基本蚁群优化(Basic Ant Colony Optimization,BACO)算法在进化中容易出现停滞,其根源是蚁群算法中信息的正反馈.在大量蚂蚁选择相同路径后,该路径上的信息素浓度远高于其他路径,算法很难再搜索到邻域空间中的其他优良解.对此,提出一种双种群改进蚁群(Dual Population Ant Colony Optimization,DPACO)算法.借鉴遗传算法中个体多样性特点,将蚁群算法中的蚂蚁分成两个群体分别独立进行进化,并定期进行信息交换.这一方法缓解了因信息素浓度失衡而造成的局部收敛,有效改进算法的搜索性能,实验结果表明该算法有效可行.  相似文献   

2.
为提升图像自动分类算法的通用性和鲁棒性,加快算法收敛速度,针对图像分类的特点,对传统蚁群算法进行改进,引入分类蚁群模型。随机蚂蚁识别统计图像类别,构建类别表,确定聚类中心;智能蚂蚁按相应的搜索前进策略进行分类。相比基本蚁群分类算法,该算法可以在较短的时间内完成图像的自动分类。  相似文献   

3.
提出了一种改进的自适应蚁群聚类算法(improved adaptive ant clustering,IAAC).该算法改进了原来的AM(ant movement)模型,并在此基础上提出了一种网格化的移动策略来改善蚂蚁移动的随机性,使蚂蚁有意识地往模式较多的区域移动,极大地减少了蚂蚁无效的移动,使蚂蚁迅速地找到合适的位...  相似文献   

4.
针对蚁群优算法在进化中容易出现早熟和停滞的现象,对基本蚁群算法进行了改进。借鉴生物群体的相互协作机理,将蚁群算法中的蚂蚁分成两个群体分别独立进行进化,并定期进行信息交换。同时,将遗传算法中排序的概念扩展到精英机制当中,形成基于优化排序的精英蚁群系统。两方法相结合,有效缓解了因信息素浓度失衡而造成的局部收敛,改进算法的搜索性能,计算结果也表明该算法有效性和可行性。  相似文献   

5.
本文首先介绍了群智能理论的产生、蚁群的觅食行为以及蚂蚁的信息系统,其次介绍了蚁群算法的基本原理以及基本模型。最后对蚁群算法的改进策略和未来的发展方向进行了探讨。  相似文献   

6.
为深入研究和评估蚁群算法在分类规则挖掘应用中具有的特点和作用,针对目前基本蚁群算法在数据挖掘方面所存在的不足,引入了改进的蚁群算法模型最大最小蚂蚁系统(MMAS)。并根据分类算法比较原则,通过实验分析对分类规则挖掘算法进行比较。根据使用不同数据集实验结果的对比分析,从仿真的精确度、速度等方面展示和证实了基于改进的蚁群算法模型MMAS的数据分类规则挖掘工具AntMiner+在分类规则挖掘中体现出的特点和优势。  相似文献   

7.
聚类问题的蚁群算法   总被引:17,自引:0,他引:17  
文章建立了聚类分析问题模型,分析了K-均值算法、模拟退火算法和蚁群算法的优缺点,结果表明蚁群算法比较有效。  相似文献   

8.
研究各种高效的分类算法是数据挖掘的重要问题之一[1]。蚁群算法作为一种新型的模拟进化算法,在求解复杂的组合优化问题中表现出了良好的性能[2]。文章介绍了蚁群算法在网页内容分类数据挖掘任务中的一种应用方案,阐述了算法的基本原理及特性,并使用少量类别的网页进行了分类实验,实验结果验证了该算法在应用中的有效性。  相似文献   

9.
基于并行多种群自适应蚁群算法的聚类分析   总被引:10,自引:0,他引:10  
数据聚类是数据挖掘中的一个重要课题。聚类问题可以归结为一个优化问题。蚁群算法作为一种鲁棒性很强的优化算法具有很强的全局优化能力。该文给出了一种并行多种群自适应蚁群算法。该算法采用多种群并行搜索,并在种群中采用基于目标函数值的启发式信息素分配策略和根据目标函数自动调整蚂蚁搜索路径的行为。理论分析和仿真实验表明,该算法是非常有效的。  相似文献   

10.
智能蚂蚁算法--蚁群算法的改进   总被引:16,自引:1,他引:16  
蚁群算法是一种解决组合优化问题的有效算法。在蚁群算法的基础上,提出了一种新的启发式搜索方法——智能蚂蚁算法。智能蚂蚁算法与蚁群算法相比,主要在以下四点进行了改进:第一,取消了外激素;第二,自动调整选择最优路径的比例;第三,目标城市的选择方法不同;第四,引入扰动以避免陷入局部优化。实验结果表明,智能蚂蚁算法可以在减少计算量的同时,取得更好的搜索结果。  相似文献   

11.
针对移动机器人在复杂地图环境中移动耗时长、易陷入局部最优等问题,设计了一种基于双向搜索的改进蚁群路径规划算法。基于K-means算法对地图预处理,量化地图的局部复杂度程度,并将局部环境信息融合到状态转移概率函数,使机器人优先选择在复杂程度小的区域进行寻优,减少路径拐点。设定双向搜索规则,改进启发函数,提高算法的局部方向搜索精度和全局搜索效率。针对蚁群算法中蚂蚁遇到U障碍物陷入死锁的问题,提出死锁判断系数,增加了有效蚂蚁的数量,进一步提高了算法性能。仿真结果表明所设计的算法在复杂地图环境中相较于传统蚁群算法移动机器人的路径搜索效率更高。  相似文献   

12.
基于改进的启发式蚁群算法的聚类问题的研究   总被引:1,自引:0,他引:1  
蚁群算法是优化领域中新出现的一种仿生进化算法,广泛应用于求解复杂组合优化问题,并已在通信网络、机器人等许多应用领域得以具体应用。聚类问题作为一种无监督的学习,能根据数据间的相似程度自动地进行分类。基于蚁群算法的聚类算法已经在当前的数据挖掘研究中得到应用。文中针对早期蚁群聚类算法的缺点,提出一种改进的启发式蚁群聚类算法(IHAC),将蚁群在多维空间中移动的启发式知识存储在称之为“记忆银行”的设备当中,来指导蚁群后边的移动行为,降低蚁群移动的随意性,避免产生未分配的数据对象。并用一些数据做了一些实验,结果证明改进的蚁群聚类算法在误分类错误率和运行时间上优于早期的蚁群聚类算法。  相似文献   

13.
蚁群算法及其改进形式综述   总被引:6,自引:0,他引:6  
蚁群算法是一种具有许多优良特性的模拟进化算法,已经成功地解决了许多复杂的组合优化问题。但是蚁群算法并不完善。本文介绍蚁群算法的模型及其存在的问题,并综述蚁群算法的多种改进形式,最后对蚁群算法将来的研究方向作出预测。  相似文献   

14.
粗糙集理论是一种处理边界对象不确定的有效方法。将粗糙集与K均值结合的粗糙K均值聚类算法,具有简单高效且可处理聚类边界元素的特点,但同时存在缺陷。针对粗糙K均值聚类算法对初始点敏感,经验权重设置忽略数据差异性,阈值设置不合理导致聚类结果波动性大的缺陷,本文提出结合蚁群算法的改进粗糙K均值聚类算法,改进的算法中使用蚁群算法中随机概率选择策略和信息素更新的正负反馈机制,以及采用动态调整算法阈值和相关权重的方法,对粗糙K均值聚类算法进行优化。最后采用UCI的Iris、Balance-scale和Wine数据集分别对算法进行实验。实验结果表明,改进后的粗糙K均值聚类算法得到的聚类结果准确率更高。  相似文献   

15.
蚁群算法是优化领域中新出现的一种仿生进化算法,是研究组合优化、通信网络、机器人等许多领域的一种新方法.基于蚁群算法的聚类方法已经在当前数据挖掘研究中得到应用.本文通过此算法对企业的客户消费数据进行分类,以此来获取不同类型客户的需求并针对不同类型的消费群体制定相应的营销策略.  相似文献   

16.
一种蚁群聚类算法   总被引:1,自引:1,他引:1  
李士勇  赵宝江 《计算机测量与控制》2007,15(11):1590-1592,1596
提出一种蚁群优化聚类算法,用于将N个对象优化分成K个不同的划分;该算法采用全局信息素更新策略和启发式信息构造聚类解,通过提高信息素在求解过程中的利用率加快了聚类速度,通过使用启发式信息提高了算法的搜索效率,使用均匀交叉算子改善了聚类解的质量;在几个模拟的数据集和UCI机器学习数据集上测试该算法的性能,并与其它几个启发式算法进行比较;计算结果表明该算法具有更好的解的质量,更少的函数估计次数和更少的运行时间.  相似文献   

17.
蚁群算法是优化领域中新出现的一种仿生进化算法,广泛应用于求解复杂组合优化问题,并已在通信网络、机器人等许多应用领域得以具体应用。聚类问题作为一种无监督的学习,能根据数据间的相似程度自动地进行分类。基于蚁群算法的聚类算法已经在当前的数据挖掘研究中得到应用。文中针对早期蚁群聚类算法的缺点,提出一种改进的启发式蚁群聚类算法(IHAC),将蚁群在多维空间中移动的启发式知识存储在称之为"记忆银行"的设备当中,来指导蚁群后边的移动行为,降低蚁群移动的随意性,避免产生未分配的数据对象。并用一些数据做了一些实验,结果证明改进的蚁群聚类算法在误分类错误率和运行时间上优于早期的蚁群聚类算法。  相似文献   

18.
针对单一聚类算法在图像分割中容易陷人局部最优或有过分割现象,造成分割精确度低等问题,文章提出了基于K-均值聚类和蚁群聚类相结合的新算法.新算法先将K-均值算法作快速分类,根据K-均值分类结果更新蚂蚁各路径上的信息素,指导其他蚂蚁选择,以提高蚁群聚类算法的运行效率.实验结果证明,新算法在图像分割处理的精确度上较单一的K均...  相似文献   

19.
模糊C均值(FCM)聚类算法采取随机选取聚类中心的方法,这种方法使得FCM算法在局部范围内容易获得最优解,但在全局范围内效果较差,且FCM算法中聚类簇的个数一般需要人为设定。面对上述种种问题,文中将蚁群聚类算法和FCM聚类算法进行结合,获得了一种改进的FCM聚类算法。该算法在初步聚类中利用蚁群聚类产生聚类中心和簇的个数,将产生的聚类中心提供给FCM算法进行再次聚类。利用蚁群聚类的全局搜索和并行运算的优点避免了聚类易陷入局部最优解的缺陷。经过实验验证,该算法较一般FCM算法具有更好的性能。  相似文献   

20.
为提高图像边缘检测的精度,提出一种基于K-均值改进蚁群优化(ACO)的彩色图像边缘检测算法。将聚类嵌入到边缘检测中,使这2类图像分割方法有效结合,增强了2类方法的优势。实验结果表明,该算法有效解决了传统蚁群算法(ACO)收敛较慢的问题,较好地保留了图像边缘细节,降低了计算复杂度,与典型分割方法相比具有更好的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号