首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because of frequent co-occurrence of metals with chlorinated organic pollutants, Fe(II), Co(II), Ni(II), and Hg(II) were evaluated for their impact on the dechlorination pathways of PCE and TCE and the subsequent transformation of the initial dechlorination products by FeS. PCE transforms to acetylene via beta-elimination, TCE via hydrogenolysis, and 1,1-DCE via alpha-elimination, while TCE transforms to acetylene via beta-elimination and cis-DCE and 1,1-DCE via hydrogenolysis. Acetylene subsequently transforms in FeS batches, but little transformation of cis-DCE and 1,1-DCE was observed. Branching ratio calculations indicate that the added metals decrease the reductive transformation of PCE and TCE via beta-elimination relative to hydrogenolysis, resulting in a higher production of the toxic DCE byproducts. Nonetheless, acetylene is generally the dominant product. Production of highly water-soluble compound(s) is suspected as a significant source for incomplete mass recoveries. In the transformation of PCE and TCE, the formation of unidentified product(s) is most significant in Co(II)-added FeS batches. Although nearly complete mass recoveries were observed in the other FeS batches, the subsequent transformation of acetylene would lead to the formation of unidentified product(s) over long time periods.  相似文献   

2.
Reductive dechlorination by mackinawite (FeS) is an important transformation pathway for chloroethylenes in anoxic environments. Yet, the impact of metals on reductive dechlorination is not well understood, despite their frequent cooccurrence with chloroethylenes. Fe(II), Co(II), Ni(II), and Hg(II) were evaluated for their impact on the dechlorination rates of PCE and TCE by FeS. Compared with unamended FeS batches, the dechlorination rates of both chloroethylenes decreased by addition of 0.01 M Fe(II). Relative to 0.01 M Fe(II)-added FeS batches, the dechlorination rates increased in FeS batches amended with 0.01 M of Co(II) and Hg(II), whereas the rates decreased in 0.01 M Ni(II)-added batches. While significantly impacting the dechlorination rates, the amended metals were quantitatively sequestered by FeS mainly because of formation of metal sulfides. Comparison of the dechlorination rates between metal-added FeS batches and metal sulfide batches suggests that discrete metal sulfides do not form in metal-added FeS batches. The observed exceptionally high reactivity of CoS suggests that it may be useful in reactive permeable barrier applications because of its stability in anoxic waters. The dechlorination rates of PCE and TCE significantly varied with Fe(ll) amendment concentrations (Fe(II)0), indicating the presence of different types of solid-bound Fe phases with Fe(II)o.  相似文献   

3.
Magnetite is precipitated by dissimilatory iron-reducing bacteria or forms through corrosion of zero-valent iron (ZVI) in permeable reactive barriers. Reduction of carbon tetrachloride (CCl4) by synthetic magnetite was examined in batch reactors to evaluate the pH dependence of the reaction rates and product distributions. This work presents the first data where magnetite promotes CCl4 dechlorination independent of added sorbed Fe(II) or coexisting minerals that maintained Fe2+ above the magnetite solubility limit. In this system, reaction rate constants increase with increasing pH values between 6 and 10. The pH dependence is explained by acid-base equilibrium between two surface sites, where the more deprotonated exhibits greater dechlorination reactivity. The distribution of reaction products was also found to depend on pH. The primary reaction product is carbon monoxide (CO) followed by chloroform (CHCl3). CHCl3 production is at a minimum at pH 6 but increases through pH 10. Formation rate constants for both products increase with increasing pH, but the values for CHCl3 increase at a much faster rate. A hypothesis is proposed that relates the CHCl3 rate enhancement to the reduced capacity of deprotonated surface sites to stabilize the trichlorocarbanion transition-state complex. These data form a basis to assess the natural attenuation capacity of magnetite formed under iron reducing conditions. Application of this information to permeable barrier technology suggests that, in the long term, oxidation of ZVI to magnetite may be accompanied by a shift toward more benign reaction products as well as a 2 order of magnitude decrease in reaction rate constants.  相似文献   

4.
Most halogenated organic compounds (HOCs) are toxic and persistent, and their efficient destruction is currently a challenge. Here, we proposed a sulfite/UV (253.7 nm) process to eliminate HOCs. Monochloroacetic acid (MCAA) was selected as the target compound and was degraded rapidly in the sulfite/UV process. The degradation kinetics were accelerated proportionally to the increased sulfite concentration, while the significant enhancement by increasing pH only occurred in a pH range of 6.0-8.7. The degradation proceeded via a reductive dechlorination mechanism induced by hydrated electron (e(aq)(-)), and complete dechlorination was readily achieved with almost all the chlorine atoms in MCAA released as chloride ions. Mass balance (C and Cl) studies showed that acetate, succinate, sulfoacetate, and chloride ions were the major products, and a degradation pathway was proposed. The dual roles of pH were not only to regulate the S(IV) species distribution but also to control the interconversion between e(aq)(-) and H(?). Effective quantum efficiency (Φ) for the formation of e(aq)(-) in the process was determined to be 0.116 ± 0.002 mol/einstein. The present study may provide a promising alternative for complete dehalogenation of most HOCs and reductive detoxification of numerous toxicants.  相似文献   

5.
The microbial reductive dechlorination kinetics of pentachloroaniline (PCA) and less chlorinated anilines (CAs) were investigated with a mixed, fermentative/ methanogenic culture. Batch dechlorination assays were performed with all available CAs at an initial concentration of 3 microM, and an incubation temperature of 22 degrees C. Dechlorination of PCA, two tetrachloroanilines (2,3,4,5- and 2,3,5,6-TeCA), five trichloroanilines (2,3,4-, 2,3,5-, 2,4,5-, 2,4,6-, and 3,4,5-TrCA), and one dichloroaniline (3,5-DCA; low extent) was observed but none of the five remaining dichloroanilines and three monochloroanilines were dechlorinated by the enrichment culture during batch assays. The dechlorination rates (k') and half-saturation coefficients (Kc) were measured using nonlinear regression based on the integrated Michaelis-Menten equation under conditions of electron donor saturation and assuming constant biomass concentration over the relatively short batch incubation period. At an initial concentration of CAs of about 3 microM, the values of k' and Kc ranged from 0.25 to 1.19 microM/day and from 0.11 to 1.72 microM, respectively, corresponding to half-lives in the range of 1.5-8.5 days. Model simulations of the sequential dechlorination reactions based on a branched-chain Michaelis-Menten model and using independently measured k' and Kc values matched the experimental data very well.  相似文献   

6.
The influence of amine buffers on carbon tetrachloride (CCl4) reductive dechlorination by the iron oxide magnetite (FeIIFeIII2O4) was examined in batch reactors. A baseline was provided by monitoring the reaction in a magnetite suspension containing NaCl as a background electrolyte at pH 8.9. The baseline reaction rate constant was measured at 7.1 x 10(-5)+/-6.3 x 10(-6) L m(-2) h(-1). Carbon monoxide (CO) was the dominant reaction product at 82% followed by chloroform (CHCl3) at 5.2%. In the presence of 0.01 M tris-(deuteroxymethyl)aminomethane (TRISd), the reaction rate constant nearly tripled to 2.1 x 10(-4)+/-6.5 x 10(-6) L m(-2) h(-1) but only increased the CHCl3 yield to 11% and did not cause any statistically significant changes to the CO yield. Reactions in the presence of triethylammonium (TEAd) (0.01 M) increased the rate constant by 17% to 8.6 x 10(-5)+/-8.1 x 10(-6) L m(-2) h(-1) but only increased the CHCl3 yield to 8.8% while leaving the CO yield unchanged. The same concentration of N,N,N',N'-tetraethylethylenediamine (TEEN) increased the reaction rate constant by 18% to 8.7 x 10(-5)+/-4.8 x 10(-6) L m(-2) h(-1) but enhanced the CHCl3 yield to 34% at the expense of the CO yield that dropped to 35%. Previous work has shown that CHCl3 can be generated either through hydrogen abstraction by a trichloromethyl radical (radical CCl3), or through proton abstraction by the trichlorocarbanion (-:CCl3). These two possible hydrogenolysis pathways were examined in the presence of deuterated buffers. Deuterium tracking experiments revealed that proton abstraction by the trichlorocarbanion was the dominant hydrogenolysis mechanism in the magnetite-buffered TRISd and TEAd systems. The only buffer that had minimal influence on both the reaction rate and product distribution was TEAd. These results indicate that buffers should be prescreened and demonstrated to have minimal impact on reaction rates and product distributions prior to use. Alternatively, it may be preferable, to utilize the buffer capacity of the solids to avoid organic buffer interactions entirely.  相似文献   

7.
Chlorine isotope fractionation during reductive dechlorination of trichloroethene (TCE) and tetrachloroethene (PCE) to cis-1,2-dichloroethene (cDCE) by anaerobic bacteria was investigated. The changes in the 37Cl/35Cl ratio observed during the one-step reaction (TCE to cDCE) can be explained by the regioselective elimination of chlorine accompanied by the Rayleigh fractionation. The fractionation factors (alpha) of the TCE dechlorination by three kinds of anaerobic cultures were approximately 0.994-0.995 at 30 degrees C. The enrichment of 37Cl in the organic chlorine during the two-step reaction (PCE to cDCE) can be explained by the random elimination of one chlorine atom in the PCE molecule followed by the regioselective elimination of one chlorine atom in the TCE molecule. The fractionation factors for the first step of the PCE dechlorination with three kinds of anaerobic cultures were estimated to be 0.987-0.991 at 30 degrees C using a mathematical model. Isotope fractionation during the first step would be the primary factor for the chlorine isotope fractionation during the PCE dechorination to cDCE. The developed models can be utilized to evaluate the fractionation factors of regioselective and multistep reactions.  相似文献   

8.
9.
Kinetic studies reported here have shown that acetylene is a potent reversible inhibitor of reductive dehalogenation of trichloroethene (TCE) and vinyl chloride (VC) by a mixed dehalogenating anaerobic culture. The mixed culture was enriched from a contaminated site in Corvallis, OR, and exhibited methanogenic, acetogenic, and reductive dehalogenation activities. The H2-fed culture transformed TCE to ethene via cis-dichloroethene (c-DCE) and VC as intermediates. Batch kinetic studies showed acetylene reversibly inhibited reduction of both TCE and VC, and the levels of inhibition were strongly dependent on acetylene concentrations in both cases. Acetylene concentrations of 192 and 12 microM, respectively, were required to achieve 90% inhibition in rates of TCE and VC transformation at an aqueous concentration of 400 microM. Acetylene also inhibited methane production (90% inhibition at 48 microM) but did not inhibit H2-dependent acetate production. Mass balances conducted during the studies of VC inhibition showed that acetogenesis, VC transformation to ethene, and methane production were responsible for 52%, 47%, and 1% of the H2 consumption, respectively. The results indicate that halorespiration is the dominant process responsible for VC and TCE transformation and that dehalorespiring organisms are the target of acetylene inhibition. Acetylene has potential use as a reversible inhibitor to probe the biological activities of reductive dechlorination and methanogenesis. It can be added to inhibit reactions and then removed to permit reactions to proceed. Thus, it can be a powerful tool for investigating intrinsic and enhanced anaerobic remediation of chloroethenes at contaminated sites. The results also suggest that acetylene produced abiotically by reactions of chlorinated ethenes with zero-valent iron could inhibit the biological transformation of VC to ethene.  相似文献   

10.
This study investigated reductive dechlorination of cis-dichloroethylene (cis-DCE) by the reduced Fe phases obtained from in situ precipitation, which involved mixing of Fe(II), Fe(III), and S(-II) solutions. A range of redox conditions were simulated by varying the ratio of initial Fe(II) concentration ([Fe(II)](o)) to initial Fe(III) concentration ([Fe(III)](o)) for iron-reducing conditions (IRC) and the ratio of [Fe(II)](o) to initial sulfide concentration ([S(-II)](o)) for sulfate-reducing conditions (SRC). Significant dechlorination of cis-DCE occurred under highly reducing IRC and iron-rich SRC, suggesting that Fe (oxyhydr)oxides including green rusts are highly reactive with cis-DCE but that Fe sulfide as mackinawite (FeS) is nonreactive. Relative concentrations of sulfate to chloride were also varied to examine the anion impact on cis-DCE dechlorination. Generally, slower dechlorination occurred in the batches with higher sulfate concentrations. As indicated by higher dissolved Fe concentration, the slower dechlorination in the presence of sulfate was probably due to the decreased surface-complexed Fe(II). This study demonstrates that the chemical form of reduced Fe(II) is critical in determining the fate of cis-DCE under anoxic conditions.  相似文献   

11.
Kinetic studies with two different anaerobic mixed cultures (the PM and the EV cultures) were conducted to evaluate inhibition between chlorinated ethylenes. The more chlorinated ethylenes inhibited the reductive dechlorination of the less chlorinated ethylenes, while the less chlorinated ethylenes weakly inhibited the dechlorination of the more chlorinated ethylenes. Tetrachloroethylene (PCE) inhibited reductive trichloroethylene (TCE) dechlorination but not cis-dichloroethylene (c-DCE) dechlorination, while TCE strongly inhibited c-DCE and VC dechlorination. c-DCE also inhibited vinyl chloride (VC) transformation to ethylene (ETH). When a competitive inhibition model was applied, the inhibition constant (K(I)) for the more chlorinated ethylene was comparable to its respective Michaelis-Menten half-velocity coefficient, K(S). Model simulations using independently derived kinetic parameters matched the experimental results well. k(max) and K(S) values required for model simulations of anaerobic dechlorination reactions were obtained using a multiple equilibration method conducted in a single reactor. The method provided precise kinetic values for each step of the dechlorination process. The greatest difference in kinetic parameters was for the VC transformation step. VC was transformed more slowly by the PM culture (k(max) and K(S) values of 2.4+/-0.4 micromol/mg of protein/day and 602+/-7 microM, respectively) compared to the EV culture (8.1+/-0.9 micromol/mg of protein/day and 62.6+/-2.4 microM). Experimental results and model simulations both illustrate how low K(S) values corresponded to efficient reductive dechlorination for the more highly chlorinated ethylenes but caused strong inhibition of the transformation of the less chlorinated products. Thus, obtaining accurate K(S) values is important for modeling both transformation rates of parent compounds and their inhibition on daughter product transformation.  相似文献   

12.
Anaerobic reductive dehalogenation of commercial PCBs such as Aroclor 1260 has a critical role of transforming highly chlorinated congeners to less chlorinated congeners that are then susceptible to aerobic degradation. The efficacy of bioaugmentation with the dehalorespiring bacterium Dehalobium chlorocoercia DF1 was tested in 2-L laboratory mesocosms containing sediment contaminated with weathered Aroclor 1260 (1.3 ppm) from Baltimore Harbor, MD. Total penta- and higher chlorinated PCBs decreased by approximately 56% (by mass) in bioaugmented mesocosms after 120 days compared with no activity observed in unamended controls. Bioaugmentation with DF-1 enhanced the dechlorination of doubly flanked chlorines and stimulated the dechlorination of single flanked chlorines as a result of an apparent synergistic effect on the indigenous population. Addition of granulated activated carbon had a slight stimulatory effect indicating that anaerobic reductive dechlorination of PCBs at low concentrations was not inhibited by a high background of inorganic carbon that could affect bioavailability. The total number of dehalorespiring bacteria was reduced by approximately half after 60 days. However, a steady state level was maintained that was greater than the indigenous population of putative dehalorespiring bacteria in untreated sediments and DF1 was maintained within the indigenous population after 120 days. The results of this study demonstrate that bioaugmentation with dehalorespiring bacteria has a stimulatory effect on the dechlorination of weathered PCBs and supports the feasibility of using in situ bioaugmentation as an environmentally less invasive and lower cost alternate to dredging for treatment of PCB impacted sediments.  相似文献   

13.
While most sites and all characterized PCE and TCE dechlorinating anaerobic bacteria produce cis-DCE as the major DCE isomer, significant amounts of trans-DCE are found in the environment. We have obtained microcosms from some sites and enrichment cultures that produce more trans-DCE than cis-DCE. These cultures reductively dechlorinated PCE and TCE to trans-DCE and cis-DCE simultaneously and in a ratio of 3(+/-0.5):1 that was stable through serial transfers with a variety of electron donors and occurred in both methanogenic and nonmethanogenic enrichments. Two sediment-free, nonmethanogenic enrichment cultures produced trans-DCE at rates of up to 2.5 micromol L(-1) day(-1). Dehalococcoides populations were detected in both trans-DCE producing cultures by their 16S rRNA gene sequences, and trans-DCE was produced in the presence of ampicillin. Because trans-DCE can be the major product from PCE and TCE microbial dechlorination, high fractions of trans-DCE at chloroethene-contaminated sites are not necessarily from source contamination.  相似文献   

14.
Abiotic reductive dechlorination of chlorinated ethylenes by the sulfate form of green rust (GR(SO4)) was examined in batch reactors. Dechlorination kinetics were described by a modified Langmuir-Hinshelwood model. The rate constant for reductive dechlorination of chlorinated ethylenes at reactive GR(SO4) surfaces was in the range of 0.592 (+/-4.4%) to 1.59 (+/-6.3%) day(-1). The specific reductive capacity of GR(SO4) for target organics was in the range of 9.86 (+/-10.1%) to 18.0 (+/-4.3%) microM/g and sorption coefficient was in the range of 0.53 (+/-2.4%) to 1.22 (+/-4.3%) mM(-1). Surface area-normalized pseudo-first-order initial rate constants for chlorinated ethylenes by GR(SO4) were 3.4 to 8.2 times greater than those by pyrite. Chlorinated ethylenes were mainly transformed to acetylene, and no detectable amounts of chlorinated intermediates were observed. The rate constants for the reductive dechlorination of trichloroethylene (TCE) increased as pH increased (6.8 to 10.1) but were independent of solid concentration and initial TCE concentration. Magnetite and/or maghemite were produced by the oxidation of GR(SO4) by TCE. These findings are relevant to the understanding of the role of abiotic reductive dechlorination during natural attenuation in environments that contain GR(SO4).  相似文献   

15.
Recent field studies have indicated synergistic effects of coupling microbial reductive dechlorination with physicochemical remediation (e.g., surfactant flushing) of dense nonaqueous phase liquid (DNAPL) source zones. This study explored chlorinated ethene (e.g., tetrachloroethene [PCE]) dechlorination in the presence of 50-5000 mg/L Tween 80, a nonionic surfactant employed in source zone remediation. Tween 80 did not inhibit dechlorination by four pure PCE-to-cis-1,2-dichloroethene (cis-DCE) or PCE-to-trichloroethene (TCE) dechlorinating cultures. In contrast, cis-DCE-dechlorinating Dehalococcoides isolates (strain BAV1 and strain FL2) failed to dechlorinate in the presence of Tween 80. Bio-Dechlor INOCULUM (BDI), a PCE-to-ethene dechlorinating consortium, produced cis-DCE in the presence of Tween 80, further suggesting that Tween 80 inhibits dechlorination by Dehalococcoides organisms. Quantitative real-time PCR analysis applied to BDI revealed that the number of Dehalococcoides cells decayed exponentially (R(2) = 0.85) according to the Chick-Watson disinfection model (pseudo first-order decay rate of 0.13+/-0.02 day(-1)) from an initial value of 6.6 +/-1.5 x 10(8) to 1.3+/-0.8 x 10(5) per mL of culture after 58 days of exposure to 250 mg/L Tween 80. Although Tween 80 exposure prevented ethene formation and reduced Dehalococcoides cell numbers, Dehalococcoides organisms remained viable, and dechlorination activity pist cis-DCE was recovered following the removal of Tween 80. These findings suggest that sequential Tween 80 flushing followed by microbial reductive dechlorination is a promising strategy for remediation of chlorinated ethene-impacted source zones.  相似文献   

16.
The reductive biotransformation of α-, β-, γ-, and δ-hexachlorocyclohexane isomers was investigated using five alternative electron donors (i.e., glucose plus methanol, glucose only, methanol only, acetate, and ethanol) in a batch assay of an HCH-dechlorinating anaerobic culture. In addition, a life cycle assessment was conducted using the IMPACT2002+ method to evaluate the environmental effects of HCH bioremediation with the aforementioned electron donors. Results showed that the electron donors methanol plus glucose, ethanol, glucose, and methanol can significantly enhance the biotransformation of each HCH isomer. However, the amended electron donors and the byproduct of the anoxic/anaerobic systems may negatively affect the environment (e.g., respiratory inorganic, land occupation, global warming, and non-renewable energy categories). These effects are attributed to the electron donor production processes. To avoid secondary pollutants, a linear relationship between the upper bound electron donor applications and HCH concentration was observed from an environmental perspective. Results indicated that the methanol scenario was the most suitable option for the current research.  相似文献   

17.
The ability to inoculate a PCE-NAPL source zone with no prior dechlorinating activity was examined using a near field-scale simulated aquifer. A known mass of PCE was added to establish a source zone, and the groundwater was depleted of oxygen using acetate and lactate prior to culture addition. An active and stable dechlorinating culture was used as an inoculum, and dechlorination activity was observed within 2 weeks following culture transfer. PCE reduction to TCE and cis-DCE was observed initially, and the formation of these compounds was accelerated by the addition of a long-term source of hydrogen (Hydrogen Releasing Compound). cis-DCE was the predominant chlorinated ethene present in the effluent after 225 days of operation, and production of VC and ethene lagged the formation of TCE and cis-OCE. However, dechlorination extent continued to improve over time, and VC eventually became a major product, suggesting that reinoculation was unnecessary. The detection of Dehalococcoides species in the source culture and in the simulated aquifer postinoculation indicated that the metabolic capability to dechlorinate beyond cis-DCE (t = 86 days and t = 245 days) was present. Elevated levels of TCE and cis-DCE were present in the source zone, but neither VC nor ethene were detected in the vicinity of NAPL. The results of this research indicated that adding dechlorinating cultures may be useful in the application of source zone bioremediation but that dechlorination beyond cis-DCE may be limited to regions downgradient of the source zone.  相似文献   

18.
We investigated the extent and variability of C and Cl isotope fractionation during the reduction of polychlorinated ethanes to evaluate the potential use of Cl isotope analysis for the assessment of contaminant transformation in subsurface environments. Kinetic isotope effects (KIE) for C and Cl for the reductive beta-elimination of 1,1,2,2-tetrachloroethane (1,1,2,2-TeCA), pentachloroethane (PCA), and hexachloroethane by Cr(II) used as model reductant in homogeneous solution were compared to KIEs measured for dehydrochlorination of 1,1,2,2-TeCA and PCA. Since isotopic reactions of polychlorinated compounds are complicated by the simultaneous presence of several Cl isotopologues and intramolecular isotopic competition, we present a procedure for the determination of KIEs for Cl from the initial reactant and final product Cl isotope ratios. Despite different reaction mechanisms, that is reduction via dissociative inner-sphere electron transfer by Cr(H2O)6(2+) and base-catalyzed, concerted elimination, respectively, apparent KIEs for C of both pathways fall within a similar range (1.021-1.031). In contrast, KIEs for Cl are significantly higher for reductive beta-elimination (1.013-1.021) than for dehydrochlorination (1.000-1.006). These results suggest that reductive transformations of polychlorinated contaminants might be identified on the basis of combined C and Cl isotope analysis.  相似文献   

19.
Abiotic reductive dechlorination of chlorinated ethylenes (tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), and vinyl chloride (VC)) by pyrite and magnetite was characterized in a batch reactor system. Dechlorination kinetics was adequately described by a modified Langmuir-Hinshelwood model that includes the effect of a decreasing reductive capacity of soil mineral. The kinetic rate constant for the reductive dechlorination of target organics at reactive sites of soil minerals was in the range of 0.185 (+/- 0.023) to 1.71 (+/- 0.06) day(-1). The calculated specific reductive capacity of soil minerals for target organics was in the range of 0.33 (+/- 0.02) to 2.26 (+/- 0.06) microM/g and sorption coefficient was in the range of 0.181 (+/- 0.006) to 0.7 (+/- 0.022) mM(-1). Surface area-normalized pseudo-first-order initial rate constants for target organics by pyrite were found to be 23.5 to 40.3 times greater than those by magnetite. Target organics were mainly transformed to acetylene and small amount of chlorinated intermediates, which suggests that beta-elimination was the main dechlorination pathway. The dechlorination of VC followed a hydrogenolysis pathway to produce ethylene and ethane. The addition of Fe(II) increased the dechlorination rate of cis-DCE and VC in magnetite suspension by nearly a factor of 10. The results obtained in this research provide basic knowledge to better predict the fate of chlorinated ethylenes and to understand the potential of abiotic processes in natural attenuation.  相似文献   

20.
Long-term column experiments were conducted to evaluate the effects of secondary carbonate minerals on permeability and reactivity of commercial granular iron treating trichloroethene (TCE). The results showed that carbonate precipitates caused a decrease in reactivity of the iron, and spatially and temporally varying reactivity loss resulted in migration of mineral precipitation fronts, as well as profiles of TCE, pH, alkalinity, calcium, and dissolved iron. In the columns receiving solutions of dissolved calcium carbonate, porosity gradually decreased in proportion to the source concentrations, as carbonate minerals accumulated. However, the rate of porosity loss slowed over time because of the declining reactivity of the iron. Thus, secondary minerals are not likely to accumulate to the extent that there is a substantial reduction in hydraulic conductivity. The reactivity of the iron was found to decrease as an exponential function of the carbonate mineral volume fraction. This changing reactivity of iron should be incorporated into predictive models for improved designs of iron permeable reactive barriers (PRBs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号