首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic Light-Emitting Diodes (OLEDs) using the thermally activated delayed fluorescence (TADF) emitter (4s,6s)-2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) are demonstrated using a novel ambipolar host 3,5-di(carbazol-9-yl)-1-phenylsulfonylbenzene (mCPSOB). When doped in a 5 wt.% concentration, OLEDs with EL efficiency values of more than 81 cd/A for current efficacy and 26.5% for external quantum efficiency are reported. These devices exhibit a low turn-on voltage of 3.2 V at 10 cd/m2, as well as reduced efficiency roll-off at high current densities. To the best of our knowledge, these are among the highest ever reported efficiencies for TADF OLEDs, and are even comparable to the highest reported efficiencies for phosphorescent OLEDs.  相似文献   

2.
《Organic Electronics》2008,9(6):964-967
A transparent Al/WO3/Au anode is introduced to fabricate high efficiency organic light-emitting devices (OLEDs). By optimizing the thicknesses of each layers of the Al/WO3/Au structure, the transmittance of Al(7 nm)/WO3(3 nm)/Au(13 nm) has reached over 55%. Concerning the performance of OLEDs using the optimized anode, the electroluminescence (EL) current efficiency and brightness are enhanced and the EL spectrum is greatly narrowed as compared to the OLEDs using indium-tin-oxide (ITO) as the anode. The results indicate that the metal/metal oxide/metal transparent electrode is a good structure for the anode of high performance OLEDs. In addition, Al/WO3/Au can function as a composite transparent electrode for top-emitting OLEDs.  相似文献   

3.
A highly fluorescent an ionic fluorene derivative 1 was synthesized and its photophysical, electrochemical and electroluminescence characteristics were investigated. Deep blue emissions were observed for compound 1 in solid as well as in dilute solutions. The synthesized compound shows high fluorescence quantum yield around 77% indicates that compound 1 can perform its role as efficient ionic emitter in LEC devices. Light-emitting electrochemical cell (LEC) devices were fabricated incorporating compound 1 without (device I) and with (device II) ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM·PF6). Devices I and II exhibited blue electroluminescence maximum centered at 455 and 454 nm with CIE coordinates of (0.15, 0.21) and (0.16, 0.22), respectively. Maximum luminance and current efficiency of 1105 cd m−2 and 0.14 cd A−1 respectively, has achieved for device I while that of device II resulted in 1247 cd m−2 and 0.14 cd A−1 respectively.  相似文献   

4.
Two host materials, DBTSF2 and DBTSF4, were designed and synthesized, incorporating dibenzothiophene (DBT) and spirobifluorene (SF) blocks. Their thermal, electrochemical and photo-physical properties were fully characterized. DBTSF4, which adopted an ortho-linkage between DBT and SF moieties, showed a significantly higher T1 energy of 2.82 eV as compared to its para-linkage analogue DBTSF2 (2.49 eV). Their applications as host for green, blue and white phosphorescent organic light-emitting diodes (PHOLEDs) were explored. The DBTSF4 based blue PHOLED has a highest current efficiency of 23.5 cd A?1. And using DBTSF4 as a single host, two-color based white PHOLEDs were achieved from cold white emission with CIE coordinate of (0.31, 0.43) to yellowish warm white emission (0.44, 0.49) with maximum current efficiencies varying from 35.8 to 52.3 cd A?1 and maximum external quantum efficiencies from 13.1% to 16.9% respectively. The white PHOLED devices also showed a low efficiency roll-off even at 10,000 cd m?2.  相似文献   

5.
There is an increasing need to develop stable, high-intensity, efficient OLEDs in the deep blue and UV. Applications include blue pixels for displays and tunable narrow solid-state UV sources for sensing, diagnostics, and development of a wide band spectrometer-on-a-chip. With the aim of developing such OLEDs we demonstrate an array of deep blue to near UV tunable microcavity (μc) OLEDs (λ ∼373–469 nm) using, in a unique approach, a mixed emitting layer (EML) of poly(N-vinyl carbazole) (PVK) and 4,4′-bis(9-carbazolyl)-biphenyl (CBP), whose ITO-based devices show a broad electroluminescence (EL) in the wavelength range of interest. This 373–469 nm band expands the 493–640 nm range previously attained with μcOLEDs into the desired deep blue-to-near UV range. Moreover, the current work highlights interesting characteristics of the complexity of mixed EML emission in combinatorial 2-d μcOLED arrays of the structure 40 nm Ag/x  nm MoOx/∼30 nm PVK:CBP (3:1 weight ratio)/y  nm 4,7-diphenyl-1,10-phenanthroline (BPhen)/1 nm LiF/100 nm Al, where x = 5, 10, 15, and 20 nm and y = 10, 15, 20, and 30 nm. In the short wavelength μc devices, only CBP emission was observed, while in the long wavelength μc devices the emission from both PVK and CBP was evident. To understand this behavior simulations based on the scattering matrix method, were performed. The source profile of the EML was extracted from the measured EL of ITO-based devices. The calculated μc spectra indeed indicated that in the thinner, short wavelength devices the emission is primarily from CBP; in the thicker devices both CBP and PVK contribute to the EL. This situation is due to the effect of the optical cavity length on the relative contributions of PVK and CBP EL through a change in the wavelength-dependent emission rate, which was not suggested previously. Structural analysis of the EML and the preceding MoOx layer complemented the data analysis.  相似文献   

6.
Wet-process enables flexible, large area-size organic devices to be fabricated cost-effectively via roll-to-roll manufacturing. However, wet-processed devices often show comparatively poor performance due to the lack of solution-process feasible functional materials that exhibit robust mechanical properties. We demonstrate here a cross-linkable material, 3,6-bis(4-vinylphenyl)-9-ethylcarbazole (VPEC), to facilitate the injection of hole and meanwhile effectively confine electron to realize, for examples, high efficiency organic light-emitting diodes, especially at high luminance. The VPEC shows a hole mobility of 1 × 10−4 cm2 V−1 s−1 and a triplet energy of 2.88 eV. Most importantly, the VPEC not only works for devices containing low band-gap red or green emitters, but also for the counterpart with high band-gap blue emitter. With the electron confining hole transporting material, the power efficiency of a studied red device, at 1,000 cd m−2 for example, is increased from 8.5 to 13.5 lm W−1, an increment of 59%, and the maximum luminance enhanced from 13,000 to 19,000 cd m−2, an increment of 46%. For a high triplet energy blue emitter containing device, it is increased from 6.9 to 8.9 lm W−1, an increment of 29%, and the maximum luminance enhanced from 9,000 to 11,000 cd m−2, an increment of 22%.  相似文献   

7.
This paper describes the synthesis of three triaryldiamine derivatives presenting two thermally polymerizable trifluorovinyl ether groups that can be polymerized through thermal curing to form perfluorocyclobutyl (PFCB) polymers. These PFCB polymers, studied using time-of-flight techniques for the first time, exhibited remarkable non-dispersive hole-transport properties, with values of μh of ca. 10?4 cm2 V?1 s?1. When we employed these thermally polymerized polymers as hole-transport layers (HTLs) in electroluminescence devices containing tris(8-hydroxyquinolate) aluminum (Alq3) as the emission layer, we obtained high current densities (ca. 3400 mA cm?2), impressive brightnesses (5 × 104 cd m?2), and high external quantum efficiencies (EQEs = 1.43%). These devices exhibited the same turn-on voltage, but higher EQEs, relative to those incorporating the vacuum-processed model compound N,N′-di(1-naphthyl)-N,N′-diphenylbenzidine (α-NPD) (EQE = 1.37%) as the HTL under the same device structure.  相似文献   

8.
High-efficiency white emission is crucial to the design of energy-saving display and lighting panels, whereas solution-process feasibility is highly desirable for large area-size and cost-effective roll-to-roll manufacturing. In this study, we demonstrate highly-efficient, bright and chromaticity stable white organic light emitting diodes (OLEDs) with solution-processed single emissive layer. The resultant best white OLED shows excellent electroluminescence performance with forward-viewing external quantum efficiency, current efficiency and power efficiency of 22.7%, 48.8 cd A 1 and 27.8 lm W 1 at 100 cd m 2, respectively, with a maximum luminance of 19,590 cd m 2. Furthermore, we also observed an increment of 112% in the power efficiency, 86.9% in the current efficiency and a decrement of 39.2% in the external quantum efficiency at 100 cd m 2 as the doping concentration of blue dye was increased from 10 wt% to 25 wt% in the devices. The better efficiency performance may be attributed to the effective exciton-confining device architecture and low-energy barrier for electrons to inject from the hole-blocking electron-transport layer to the host layer.  相似文献   

9.
N,N-diphenyl-4-(quinolin-8-yl)aniline (SQTPA), which composes a triphenylamine group and a quinoline group, has been synthesized and employed as a hole-transporter in phosphorescent OLEDs. It has been proved that SQTPA has efficient hole-transport property with a hole-mobility of 3.60 × 10−5 cm2/V s at the electric field of 800 (V/cm)1/2, which is higher than that of NPB (1.93 × 10−5 cm2/V s). Blue, orange and green phosphorescent OLEDs have been fabricated based on FIrpic, Ir(2-phq)3, Ir(ppy)3 with typical structures by using SQTPA as the hole-transporter. The SQTPA-based devices show maximum external quantum efficiencies and power efficiencies of 17.5%, 32.5 lm/W for blue, 12.3%, 20.5 lm/W for orange and 20.3%, 64.5 lm/W for green. The performances of SQTPA-based devices are much better than that of NPB-based phosphorescent OLEDs with similar structures. Thought of its very simple molecular structure and easy synthetic route, SQTPA should be an efficient hole-transporter for phosphorescent OLEDs.  相似文献   

10.
《Organic Electronics》2014,15(3):758-774
A series of alcohol-soluble amino-functionalized polyfluorene derivatives (PF-N-S, PF-N-SC8 and PF-N-SOC8) comprising various ratios of dibenzothiophene-S,S-dioxide segments (S/SC8/SOC8) in the main chains, respectively, were synthesized and utilized as cathode interfacial layer (CIL) in polymer light-emitting diodes (PLEDs) and polymer solar cells (PSCs) with high-work-function Al (or Au) electrode. The polymers possess LUMO/HOMO levels at −2.78 to −3.53 eV/−5.69 to −6.32 eV. Multilayer PLEDs and PSCs with device configurations of ITO/PEDOT:PSS (40 nm)/P-PPV or PFO-DBT35:PCBM = 1:2 (80 nm)/CIL (3–15 nm)/Al (or Au) (100 nm) were fabricated. The PF-N-S-10/Al (or Au) cathode PLEDs displayed maximum luminous efficiency of 24.4 cd A−1 (or 11.9 cd A−1), significantly higher than bare Al (or Au) cathode device, exceeding well-known Ba/Al and poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN)/Al (or PFN/Au) cathode devices. The enhanced open-circuit voltages (Vocs), electron reflux and reduced work functions clarify that the electron injection barrier from the Al (or Au) electrode can be lowered by inserting the polymers as CIL. The resulted PSCs also show device performances exceeding Al and PFN/Al cathode devices. The results indicate that PF-N-S, PF-N-SC8 and PF-N-SOC8 are excellent CIL materials for PLEDs and PSCs with high-work-function Al or Au electrode.  相似文献   

11.
In order to achieve low driving voltage, electrophosphorescent green organic light-emitting diodes (OLEDs) based on a host material with small energy gap between the lowest excited singlet state and the lowest excited triplet state (ΔEST) have been fabricated. 2-biphenyl-4,6-bis(12-phenylindolo[2,3-a] carbazole-11-yl)- 1,3,5-triazine (PIC–TRZ) with ΔEST of only 0.11 eV has been found to be bipolar and used as the host for green OLEDs based on tris(2-phenylpyridinato) iridium(III) (Ir(ppy)3). A very low onset voltage of 2.19 V is achieved in devices without p- or n-doping. Maximum current and power efficiencies are 68 cd/A and 60 lm/W, respectively, and no significant roll-off of current efficiency (58 cd/A at 1000 cd/m2 and 62 cd/A at 10,000 cd/m2) have been observed. The small roll-off is due to the improved charge balance and the wide charge recombination zone in the emissive layer.  相似文献   

12.
《Organic Electronics》2008,9(5):609-616
We reported an asymmetric phenylenevinylene with a cis double bond 2-(4-(p-tolyl)styryl)-1,4-dip-tolylbenzene (cis-TSDTB) and its use as efficient deep-blue emitter for organic light-emitting diodes (OLEDs) applications. The crystal structure of cis-TSDTB showed torsion configuration and asymmetric geometry, which make it packing in a reduced intermolecular interaction arrangement. And its single crystals showed excellent fluorescence owing to this unique molecular configuration. Typical OLEDs using cis-TSDTB as non-doped emitters exhibited saturated blue light with the CIE 1931 coordinates of (0.15, 0.10), which is quite close to the National Television Standards Committee (NTSC) blue standard. High luminescence efficiency (3.4 cd A−1) and high brightness (9855 cd m−2) have been realized in the device. All of these outstanding results indicated that cis-phenylenevinylene will be a promising candidate as blue light-emitting materials.  相似文献   

13.
Efficient solution-processed electrophosphorescent devices using two blue-emitting ionic iridium complexes (complex 1 and complex 2) were fabricated, with poly(N-vinylcarbazole) (PVK):1,3-bis(5-(4-tert-butylphenyl)-1,3,4-oxadiazol-2-yl)benzene (OXD-7) as the host and Cs2CO3/Al as the cathode. Using complex 1 as the dopant, we obtained efficient blue-green electrophosphorescence from single-layer devices with a maximum efficiency of 12.2 cd A?1, a maximum brightness of 12,600 cd m?2 and CIE (Commission Internationale de l’Éclairage) coordinates of (0.19, 0.45). And the maximum efficiency of the device based on complex 1 can be further improved to 20.2 cd A?1, when a thin 1,3,5-tris(1-phenyl-1H-benzo[d]imidazol-2-yl)benzene (TPBI) layer was inserted between the light-emitting layer and the cathode. Using complex 2 as the dopant, we obtained deep-blue electrophosphorescence with the emission peak at 458 nm and CIE coordinates of (0.16, 0.22). Our work suggests that ionic iridium complexes are promising phosphors for obtaining efficient electrophosphorescence in the blue region.  相似文献   

14.
We report efficient red, orange, green and blue organic–inorganic light emitting devices using light emitting polymers and polyethylenimine ethoxylated (PEIE) interlayer with the respective luminance efficiency of 1.3, 2.7, 10 and 4.1 cd A−1, which is comparable to that of the analogous conventional devices using a low work-function metal cathode. This is enabled by the enhanced electron injection due to the effective reduction of the ZnO work-function by PEIE, as well as hole/exciton-blocking function of PEIE layer. Due to the benign compatibility between PEIE and the neighboring organic layer, the novel phosphorescent organic–inorganic devices using solution-processed small molecule emissive layer show the maximum luminance efficiency of 87.6 cd A−1 and external quantum efficiency of 20.9% at 1000 cd m−2.  相似文献   

15.
A neutral ligand 9-(4-tert-butylphenyl)-3,6-bis(diphenylphosphineoxide)-carbazole (DPPOC) and its complex Tb(PMIP)3DPPOC (A, where PMIP stands for 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone) were synthesized. DPPOC has a suitable lowest triplet energy level (24,691 cm?1) for the sensitization of Tb(III) (5D4: 20,400 cm?1) and a significantly higher thermal stability (glass transition temperature 137 °C) compared with the familiar ligand triphenylphosphine oxide (TPPO). Experiments revealed that the emission layer of the Tb(PMIP)3DPPOC film could be prepared by vacuum co-deposition of the complex Tb(PMIP)3(H2O)2 (B) and DPPOC (molar ratio = 1:1). The electroluminescent (EL) device ITO/N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-diphenyl-4,4′-diamine (NPB; 10 nm)/Tb(PMIP)3 (20 nm)/co-deposited Tb(PMIP)3DPPOC (30 nm)/2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP; 10 nm)/tris(8-hydroxyquinoline) (AlQ; 20 nm)/Mg0.9Ag0.1 (200 nm)/Ag (80 nm) exhibited pure emission from terbium ions, even at the highest current density. The highest efficiency obtained was 16.1 lm W?1, 36.0 cd A?1 at 6 V. At a practical brightness of 119 cd m?2 (11 V) the efficiency remained above 4.5 lm W?1, 15.7 cd A?1. These values are a significant improvement over the previously reported Tb(PMIP)3(TPPO)2 (C).  相似文献   

16.
《Organic Electronics》2014,15(7):1678-1686
A high efficient UV–violet emission type material bis[4-(9,9′-spirobifluorene-2-yl)phenyl] sulfone (SF-DPSO) has been synthesized by incorporating electron deficient sulfone and morphologically stable spirobifluorene into one molecule. The steric and bulky compound SF-DPSO exhibits an excellent solid state photoluminescence quantum yield (ΦPL = 92%), high glass transition temperature (Tg = 211 °C) and high triplet energy (ET = 2.85 eV). In addition, the uniform amorphous thin film could be formed by spin-coating from its solution. These promising physical properties of the material made it suitable for using as UV–violet emitter in non-doped device and appropriate host in phosphorescent OLEDs. With SF-DPSO as an emitter, the non-doped solution processed device achieved an efficient UV–violet emission with the EL peak around 400 nm. By using SF-DPSO as a host, solution processed blue and green phosphorescent organic light emitting diodes showed a high luminous efficiency of 13.7 and 30.2 cd A−1, respectively.  相似文献   

17.
《Organic Electronics》2008,9(5):890-894
LaCuOSe:Mg is a wide-gap p-type semiconductor with a high conductivity and a large work function. Potential of LaCuOSe:Mg as a transparent hole-injection electrode of organic light-emitting diodes (OLEDs) was examined by employing N,N′-diphenyl-N,N′-bis (1,1′-biphenyl)-4,4′-diamine (NPB) for a hole transport layer. Photoemission spectroscopy revealed that an oxygen plasma treated surface of LaCuOSe:Mg formed a hole-injection barrier as low as 0.3 eV, which is approximately a half of a conventional ITO/NPB interface. Hole-only devices composed of a LaCuOSe:Mg/NPB/Al structure showed a low threshold voltage ∼0.2 V and high-density current drivability of 250 mA cm−2 at 2 V, which is larger by two orders of magnitude than that of ITO/NPB/Al devices. These results demonstrate that LaCuOSe:Mg has great potential as an efficient transparent anode for OLEDs and other organic electronic devices.  相似文献   

18.
We report on an alternating current (AC) field induced organic electroluminescence (EL) device with internal charge carrier generation and recombination luminance of over 5000 cd m?2 under AC drive without charge carrier injection from external electrodes. The ultra-bright AC-EL is attributed to an optical optimization performed on the devices via numerical optical simulations based on an optical thin film model as well as an increase in the number of charge carriers achieved via the concept of molecular doping within the device. The luminance levels achieved are highest reported so far in literature for AC organic light emitting devices.  相似文献   

19.
There is an emission peak at 494 nm in the electroluminescence (EL) of PVK [poly(n-vinylcarbazole)]: Eu(o-BBA)3(phen) besides PVK exciton emission and Eu3+ characteristic emissions. Both the peaking at 494 nm emission and PVK emission influenced the color purity of red emission from Eu(o-BBA)3(phen). In order to restrain these emissions and obtain high intensity red emission, 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7,-tetramethyljulolidy-9-enyl)-4Hpyran (DCJTB) and Eu(o-BBA)3(phen) were co-doped in PVK solution and used as the active emission layer. The EL intensity of co-doped devices reached to 420 cd/m2 at 20 V driving voltage. The chromaticity coordinates of EL was invariable (x = 0.55, y = 0.36) with the increase of driving voltage. For further improvement of EL intensity, organic–inorganic hybrid devices (ITO/active emission layer/ZnS/Al) were fabricated. The EL intensity was increased by a factor of 2.5 [(420 cd/m2)/(168 cd/m2)] when the Eu complex was doped with an efficient dye DCJTB, and by a factor of ≈4 [(650 cd/m2)/(168 cd/m2)] when in addition ZnS layer was deposited on such an emitting layer prior to evaporation of the Al cathode.  相似文献   

20.
《Organic Electronics》2014,15(6):1197-1204
Efficient non-doped deep blue organic light-emitting diodes (OLEDs) were fabricated by solution-processing method by using a series of small molecules consisting of various contents of triphenylamine and phosphonate-featured fluorene units as the emitting layer. Without any electron-injection layer, one of the optimal devices with a simple double-layer device configuration exhibits a maximal current efficiency of 2.59 cd A−1 at 6.8 V (1.72 mA cm−2) with a CIE coordinates of (0.163, 0.097). These double-layer devices are demonstrated with excellent color-stability under a wide range of operating current density. The current work indicates that electron-rich triphenylamine moiety incorporated with phosphonate-featured fluorene units could be utilized as building blocks to construct a multi-functional platform combining good electron-injection property, carrier-transport property, and efficient electroluminescence. It also provides an approach to achieve a structure-simplified color-stable efficient blue OLED.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号