首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Organic Electronics》2014,15(7):1678-1686
A high efficient UV–violet emission type material bis[4-(9,9′-spirobifluorene-2-yl)phenyl] sulfone (SF-DPSO) has been synthesized by incorporating electron deficient sulfone and morphologically stable spirobifluorene into one molecule. The steric and bulky compound SF-DPSO exhibits an excellent solid state photoluminescence quantum yield (ΦPL = 92%), high glass transition temperature (Tg = 211 °C) and high triplet energy (ET = 2.85 eV). In addition, the uniform amorphous thin film could be formed by spin-coating from its solution. These promising physical properties of the material made it suitable for using as UV–violet emitter in non-doped device and appropriate host in phosphorescent OLEDs. With SF-DPSO as an emitter, the non-doped solution processed device achieved an efficient UV–violet emission with the EL peak around 400 nm. By using SF-DPSO as a host, solution processed blue and green phosphorescent organic light emitting diodes showed a high luminous efficiency of 13.7 and 30.2 cd A−1, respectively.  相似文献   

2.
Three new asymmetric light emitting organic compounds were synthesized with diphenylamine or triphenylamine side groups; 10-(3,5-diphenylphenyl)-N,N-diphenylanthracen-9-amine (MADa), 4-(10-(3,5-diphenylphenyl)anthracen-9-yl)-N,N-diphenylaniline (MATa), and 4-(10-(3′,5′-diphenylbiphenyl-4-yl)anthracen-9-yl)-N,N-diphenylaniline (TATa). MATa and TATa had a PLmax at 463 nm in the blue region, and MADa had a PLmax at 498 nm. MADa and MATa had Tg values greater than 120 °C, and TATa had a Tg of 139 °C. EL devices containing the synthesized compounds were fabricated in the configuration: ITO/4,4′,4′′-tris(N-(2-naphthyl)-N-phenyl-amino)-triphenylamine (2-TNATA) (60 nm)/N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)benzidine (NPB) (15 nm)/MADa or MATa or TATa or 9,10-di(2′-naphthyl)anthracene (MADN) (30 nm)/8-hydroxyquinoline aluminum (Alq3) (30 nm)/LiF (1 nm)/Al (200 nm). The efficiency and color coordinate values (respectively) were 10.3 cd/A and (0.199, 0.152; bluish-green) for the MADa device, 4.67 cd/A and (0.151, 0.177) for the MATa device, and 6.07 cd/A and (0.149, 0.177) for the TATa device. The TATa device had a high external quantum efficiency (EQE) of 6.19%, and its luminance and power efficiencies and life-time were more than twice those of the MADN device.  相似文献   

3.
Poly(2-(N-carbazolyl)ethyl acrylate), a poly(acrylate) comprised of carbazole-side groups attached via a flexible chain to the polymer backbone (PVAK) has been tested as host for solution-processed polymer light-emitting devices (PLEDs). This non-conjugated polymer proved to be an excellent candidate to host wide-bandgap phosphors. Notably, this polymer exhibited a high thermal stability (Td = 322 °C), a glass transition temperature (Tg) of 91 °C and a wide bandgap corresponding to the pendent carbazole units and the disrupted π-conjugation of the polymer main chain, making this polymeric host a suitable candidate for wide bandgap triplet emitters. When tested as a host for FIrpic and Ir(ppy)3, the resulting blue and green light-emitting devices showed a maximum luminous efficiency of 18.25 and 17.74 cd/A, respectively, which are comparable to recent reports of devices made using other carbazole-based oxygen-rich polymeric hosts. The polymer was also characterized by UV–visible absorption, photoluminescence spectroscopy as well as cyclic voltammetry.  相似文献   

4.
We have successfully prepared thin films of PbBr-based layered perovskite having hole-transporting carbazole chromophore-linked ammonium molecules as an organic layer by a simple spin-coating from the N,N-dimethylformamide solution in which the stoichiometric amount of lead bromide and carbazole-linked ammonium bromides was dissolved. Their X-ray diffraction profiles exhibited that their layer structure formed (0 0 n)-orientation, where c-axis is perpendicular to the substrate plane. Their layer structure depended on the alkyl chain length of ammonium molecules. When methylene length of C5H10 was employed in the carbazole-linked ammonium molecules, highest orderliness of the layer structure was attained; higher-order X-ray diffraction peaks were observed in the layered perovskite films. In the layered pervskite film, in-plane conduction, namely conduction in the direction of the stacking of carbazole chromophore, was measured. For comparison, conductivity of poly(N-vinylcarbazole) (PVCBz) thin film was also measured. The conductivity of the layered perovskite thin film (1.8 × 10?10 Scm?1 at 303 K) was about three order of magnitude larger than that of the PVCBz thin film (5.3 × 10?14 Scm?1 at 303 K). Despite the much higher conductivity of the layered peroskite thin film, the activation energy of the conductivity of the layered perovskite thin film (1.44 eV) was about 2.4 times larger than that of the PVCBz thin film (0.61 eV). This phenomenon is probably due to difference in film morphology through considering the results of AFM observation.  相似文献   

5.
Methylammonium-tin-iodide (MASnxI3, 0.9 ≤ x ≤ 1.1) systems were prepared by precipitation process in aqueous solutions. The “as prepared” MASnxI3 systems exhibited a tetragonal crystalline phase (space group I4cm) with polyhedral crystallites (length 50–400 µm). The as prepared samples were annealed at T = 150 °C for t = 8 h under nitrogen and synthetic air. Under nitrogen, the CH3NH3SnxI3 systems adopt nearly-cubic tetragonal structure (space group P4mm) with crystallites of 2–4 µm length whereas a degradation process with formation of non-crystalline phases occurred in air. The differential thermal analysis (DTA) profile in nitrogen revealed events at T = 247 °C, T = 297 °C (decomposition of CH3NH3SnxI3 systems into methylamine (CH3NH2), hydroiodic acid (HI) and SnI2), and in the range T = 342–373 °C (melting of SnI2) respectively. The thermal profile in air showed endothermic events at T = 139 °C and T = 259 °C with additional events at onset temperatures of T = 337 °C and T = 423 °C respectively which correspond to the formation of Sn(IV)-O binds and to the decomposition of methylamine. Static thermogravimetry analysis (TG), performed at T = 85 °C and T = 150 °C for t = 2 h, revealed a linear weight loss as a function of the time. The optical absorption spectra displayed absorbance edges in near infrared range, at 1107.0 nm (x = 0.9), 1098.6 nm (x = 1.0) and 1073.2 nm (x = 1.1) respectively.  相似文献   

6.
The influence of crystallinity of as-deposited Ge films on Ge quantum dot (QD) formation via carbon (C)-mediated solid-phase epitaxy (SPE) was investigated. The samples were fabricated by solid-source molecular beam epitaxy (MBE). Ge/C/Si structure was formed by sequential deposition of C and Ge at deposition temperature (TD) of 150–400 °C, and it was heat-treated in the MBE chamber at 650 °C. In the case of amorphous or a mixture of amorphous and nano-crystalline Ge film grown for TD ≤250 °C, density of QDs increased with increasing TD due to the increase of C-Ge bonds in Ge layer. Ge QDs with diameter of 9.2±2.1 nm were formed in the highest density of 8.3×1011 cm−2 for TD =250 °C. On the contrary, in the case of polycrystalline Ge film for TD ≥300 °C, density of QDs decreased slightly. This is because C incorporation into Ge layer during SPE was suppressed due to the as-crystallized columnar grains. These results suggest that as-deposited Ge film in a mixture of amorphous and nano-crystalline state is suitable to form small and dense Ge QDs via C-mediated SPE.  相似文献   

7.
《Organic Electronics》2008,9(1):101-110
A series of highly efficient blue materials based on iminodibenzyl-substituted distyrylarylene (IDB-series) fluorescent dyes using the concept of steric-compression have been designed and synthesized by means of a rigidized and over-sized ring. The steric-compression effect can shorten the effective conjugation length (chromophore) of the molecule and the added phenyl moiety in the core can alleviate the propensity for molecular aggregation. These materials also possess high glass transition temperature over 100 °C. The blue IDB-Ph device achieved a maximum external quantum efficiency of 4.8% with a Commission Internationale de l’Eclairage (CIEx,y) coordinate of (0.16, 0.28). When applied in two-element white OLED system, the IDB-Ph doped device achieved a luminance efficiency of 11.0 cd/A with a CIEx,y color coordinate of (0.29, 0.36).  相似文献   

8.
Tin oxide (SnO2) thin films were deposited on glass substrates by thermal evaporation at different substrate temperatures. Increasing substrate temperature (Ts) from 250 to 450 °C reduced resistivity of SnO2 thin films from 18×10−4 to 4×10−4 Ω ▒cm. Further increase of temperature up to 550 °C had no effect on the resistivity. For films prepared at 450 °C, high transparency (91.5%) over the visible wavelength region of spectrum was obtained. Refractive index and porosity of the layers were also calculated. A direct band gap at different substrate temperatures is in the range of 3.55−3.77 eV. X-ray diffraction (XRD) results suggested that all films were amorphous in structure at lower substrate temperatures, while crystalline SnO2 films were obtained at higher temperatures. Scanning electron microscopy images showed that the grain size and crystallinity of films depend on the substrate temperature. SnO2 films prepared at 550 °C have a very smooth surface with an RMS roughness of 0.38 nm.  相似文献   

9.
Indium sulfide (In2S3) thin films are of interest as buffer layers in chalcopyrite absorber based solar cells; and as media providing two-photon absorption for intermediate-band solar cells. We investigated the suitability of chemical spray pyrolysis (CSP) for growing In2S3 thin films in a structural order where indium atoms are preferentially in the octahedral sites. We sprayed aqueous or alcoholic solutions of indium chloride (InCl3) and thiourea (SC(NH2)2) precursors onto a substrate with surface temperatures (TS) of 205, 230, 275 and 320 °C. The as-deposited films grown from aqueous solutions were annealed in 5% H2S containing atmosphere at 500 °C. We used Raman spectroscopy, X-ray diffraction and Energy Dispersive X-ray spectroscopy to evaluate the effect of growth temperature and the effect of annealing on the film structure and stoichiometry. The use of alcoholic solvent instead of aqueous allows us to use much lower TS while preserving the quality of the β-In2S3 films obtained. Similarly, films with increased stoichiometry and quality are present at a higher TS; and when annealed. The annealing of the films grown at TS of 205 °C results in a much higher gain of the crystal quality compared to the gain when annealing the films grown at TS of 320 °C, although the quality remain higher when deposited at TS of 320 °C. Simultaneously with the increase of the film quality, there is a sign of increased quality of the crystal ordering with indium in the octahedral sites. Such a crystal ordering favor the use of CSP deposited In2S3 films in the intermediate band solar cells.  相似文献   

10.
《Organic Electronics》2014,15(9):1936-1941
We report an inorganic/organic hybrid barrier that combines the alternating deposition of a layer of ZrO2 using low temperature atomic layer deposition and a 16-μm-thick layer of UV-curable NOA63 epoxy using spin-coating. The effective water vapor transmission rates of single ZrO2 film was improved by adding solution epoxy from 3.03 × 10−3 g/m2 day to 1.27 × 10−4 g/m2 day in the hybrid NOA63/ZrO2/NOA63/ZrO2 films at 20 °C and a relative humidity of 60%. In consequence, the organic light-emitting diodes encapsulated with inorganic/organic hybrid barriers were undamaged by environmental oxygen and moisture and their luminance decay time improved by a considerable extent.  相似文献   

11.
We report a highly enhanced light extraction from a top emission organic light emitting diode with little image blurring and color variation with viewing angle. Direct integration of a high refractive index micro lens array on the top of the transparent indium zinc oxide top electrode of a green phosphorescent OLED showed a significant enhancement of light extraction to get EQE of 44.7% from 27.6%, the power efficiency of 134.7 lm/w from 85.9 lm/W and the current efficiency of 217.2 cd/A from 120.7 cd/A without image blurring. In addition, the device showed excellent color stability on viewing angle with Commission Internationale de l’Eclairage (CIE) coordinate of Δx = 0.01, Δy = 0.01 as the viewing angle varied from 0° to 60°.  相似文献   

12.
《Organic Electronics》2007,8(4):343-348
By introducing CFx thin film as hole injection layer on top of indium tin oxide (ITO) anode via plasma polymerization of CHF3, the device with poly(9,9-dioctylfluorene) (PFO) as emitting layer, ITO/CFx(35 W)/PFO/CsF/Ca/Al, is prepared. At the optimal C/F atom ratio using the radio frequency power 35 W, the device performance is optimal having the maximum current efficiency 3.1 cd/A and maximum brightness 8400 cd/m2. This is attributed to a better balance between hole and electron fluxes, resulting from a decrease in hole injection barrier as manifested by ultraviolet photoelectron spectroscopy and scanning surface potential microscopy.  相似文献   

13.
《Organic Electronics》2007,8(5):631-634
Quaterrylene molecules, which have a planar and highly π-conjugated chemical structure, were deposited on a SiO2 surface, and their thin film structures, including surface morphology and molecular orientation, were examined by atomic force microscopy (AFM) and X-ray diffractometry (XRD). AFM observations revealed the grain size and surface roughness to be closely dependent on the substrate temperature in the range from 27 °C to 200 °C. Particularly at a substrate temperature of 140 °C, grain sizes of up to 6 μm and low surface roughness of 1.67 nm were successfully obtained in the 8 ML-thick film. XRD measurements of the quaterrylene thin film revealed (0 0 l) Bragg reflections, corresponding to a spacing of 1.89 nm. This value coincides with the average height of the terraces of the stepped structure observed in the AFM images. These results clearly demonstrate the quaterrylene molecules to have an upright orientation and that thin films grow as layered structures on the surface. From the full width of half maximum (FWHM) of the XRD rocking curve, the degree of alignment of the molecular planes (mosaicity) was estimated to be 0.09°, which shows that the film has a highly ordered structure.  相似文献   

14.
CuIn11S17 compound was synthesized by horizontal Bridgman method using high-purity copper, indium and sulfur elements. CuIn11S17 thin films were prepared by high vacuum evaporation on glass substrates. The glass substrates were heated at 30, 100 and 200 °C. The structural properties of the powder and the films were investigated using X-ray diffraction (XRD). XRD analysis of thin films revealed that the sample deposited at a room temperature was amorphous in nature while those deposited on heated substrates were polycrystalline with a preferred orientation along the (311) plane of the spinel phase. Ultraviolet–visible (UV–vis) spectroscopy was used to study the optical properties of thin films. The results showed that CuIn11S17 thin films have high absorption coefficient α in the visible range (105–106 cm−1). The band gap Eg of the films decrease from 2.30 to 1.98 eV with increasing the substrate temperature (Ts) from 30 to 200 °C. We exploited the models of Swanepoel, Wemple–DiDomenico and Spitzer–Fan for the analysis of the dispersion of the refractive index n and the determination of the optical constants of the films. Hot probe method showed that CuIn11S17 films deposited at Ts=30 °C and Ts=100 °C are p-type conductivity whereas the sample deposited at Ts=200 °C is highly compensated.  相似文献   

15.
Effects of thermal annealing on the morphology of the AlxGa(1−x)N films with two different high Al-contents (x=0.43 and 0.52) have been investigated by atomic force microscopy (AFM). The annealing treatments were performed in a nitrogen (N2) gas ambient as short-time (4 min) and long-time (30 min). Firstly, the films were annealed as short-time in the range of 800–950 °C in steps of 50–100 °C. The surface root-mean-square (rms) roughness of the films reduced with increasing temperature at short-time annealing (up to 900 °C), while their surface morphologies were not changed. At the same time, the degradation appeared on the surface of the film with lower Al-content after 950 °C. Secondly, the Al0.43Ga0.57N film was annealed as long-time in the range of 1000–1200 °C in steps of 50 °C. The surface morphology and rms roughness of the film with increasing temperature up to 1150 °C did not significantly change. Above those temperatures, the surface morphology changed from step-flow to grain-like and the rms roughness significantly increased.  相似文献   

16.
Successful organic photovoltaic (OPV) device fabrication is contingent on selecting an effective encapsulation barrier layer to preserve device functionality by inhibiting atmosphere-induced degradation. In this work, ultra-thin AlOx layers are deposited by atomic layer deposition (ALD) to encapsulate pre-fabricated OPV devices. A summary of ALD recipe effects (temperature, cycling time, and number of cycles) on AlOx film growth and device longevity is presented. First, AlOx film growth on the hydrophobic OPV surface is shown to occur by a 3D island growth mechanism with distinct nucleation and cluster growth regions before coalescence of a complete encapsulation layer with a thickness ⩾7 nm by 500 cycles. Encapsulated device performance testing further demonstrates that reducing ALD processing temperature to 100 °C minimizes OPV phase segregation and surface oxidation loss mechanisms as evidenced by improved short circuit current and fill factor retention when compared with the conventional 140–150 °C range. Ultra-thin AlOx encapsulation by ALD provides significant device lifetime enhancement (∼30% device efficiency after 2000 h of air exposure), which is well beyond other ALD-based encapsulation works reported in the literature. Furthermore, the interfacial bonding strength at the OPV–AlOx interface is shown to play a crucial role in determining film failure mode and therefore, directly impacts ultimate device lifetime.  相似文献   

17.
18.
Two solution processable π-conjugated triphenylamine-based dendrimers, Tr-TPA3 and Tr-TPA9 were served as hole-transporting materials (HTMs) for organic light-emitting devices (OLEDs). The two dendrimers exhibit similar absorption and emission behaviors in solutions and thin films, which demonstrate that these dendrimers can form amorphous states in their films. The dendrimers showed excellent solubility, which are soluble in common organic solvents such as chloroform, tetrahydrofuran, and 1,1,2,2-tetrachloroethane, high thermal stability with high glass-transition temperature (Tg) of 115 °C for Tr-TPA3 and 140 °C for Tr-TPA9, high the highest unoccupied molecular orbital (HOMO) energy level (?5.12 eV for Tr-TPA3 and ?4.95 eV for Tr-TPA9, respectively) and good film forming property. When we employed these dendrimers as hole transport layer (HTL) in tris-(8-hydroxyquinoline) aluminum (Alq3)-emitting electroluminescence (EL) devices, the Tr-TPA9-based double-layer device exhibited the turn-on voltage of 2.5 V, the maximum luminance of about 11,058 cd m?2 and the maximum current efficiency of 4.01 cd A?1. The comparison of the properties between the EL devices with dendrimers as HTL and the EL device with 1,4-bis(1-naphthylphenylamino)biphenyl (NPB) as HTL indicated that this series of dendrimers can be good candidates for HTM in OLEDs.  相似文献   

19.
Solution-processed p-type gallium tin oxide (GTO) transparent semiconductor thin films were prepared at a low temperature of 300 °C using ultraviolet (UV)-assisted annealing instead of conventional high-temperature annealing (> 500 °C). We report the effects of UV irradiation time on the structural, optical, and electrical properties of sol-gel derived GTO thin films and a comparison study of the physical properties of UV-assisted annealed (UVA) and conventional thermally annealed (CTA) GTO thin films. The Ga doping content was fixed at 15 at% in the precursor solution ([Ga]/[Sn]+[Ga] = 15%). After a spin-coating and preheating procedure was performed two times, the dried sol-gel films were heated on a hotplate at 300 °C under UV light irradiation for 1–4 h. Each UVA GTO thin film had a dense microstructure and flat free surface and exhibited an average optical transmittance approaching 85.0%. The level of crystallinity, crystallite size, and hole concentration density of the GTO thin films increased with increasing UV irradiation time. In this study, the UVA 4 h thin film samples exhibited the highest hole concentration (9.87 × 1017 cm−3) and the lowest resistivity (1.8 Ω cm) and had a hole mobility of 5.1 cm2/Vs.  相似文献   

20.
Phosphorus doped amorphous/nanocrystalline silicon (a-Si:H/nc-Si:H) thin films have been deposited by a filtered cathodic vacuum arc (FCVA) technique in the presence of hydrogen gas at different substrate temperatures (Ts) ranging from room temperature (RT) to 350 °C. The films have been characterized by using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, dark conductivity (σD), activation energy (ΔE), optical band gap (Eg) and secondary ion mass spectroscopy. The XRD patterns show that RT grown film is amorphous in nature but high temperature (225 and 350 °C) deposited films exhibit nanocrystalline structure with (111) and (220) crystal orientations. The crystallite size of higher temperature grown silicon film evaluated was between 13 and 25 nm. Raman spectra reveal the amorphous nature of the film deposited at RT, whereas higher temperature deposited films show crystalline nature. The crystalline volume fraction of the silicon film deposited at higher temperatures (225 and 350 °C) was estimated to be 58 and 72%. With the increase of Ts, the bonding configuration changes from mono-hydride to di-hydride as revealed by the FTIR spectra. The values of σD, ΔE and Eg of silicon films deposited at different Ts were found to be in the range of 5.37×10−4–1.04 Ω−1 cm−1, 0.05–0.45 eV and 1.42–1.83 eV, respectively. Photoconduction of 3.5% has also been observed in n-type nc-Si:H films with the response and recovery times of 9 and 12 s, respectively. A n-type nc-Si:H/p-type c-Si heterojunction diode was fabricated which showed the diode quality factor between 1.6 and 1.8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号