首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our previous researches, we proposed the artificial chromosomes with genetic algorithm (ACGA) which combines the concept of the Estimation of Distribution Algorithms (EDAs) with genetic algorithms (GAs). The probabilistic model used in the ACGA is the univariate probabilistic model. We showed that ACGA is effective in solving the scheduling problems. In this paper, a new probabilistic model is proposed to capture the variable linkages together with the univariate probabilistic model where most EDAs could use only one statistic information. This proposed algorithm is named extended artificial chromosomes with genetic algorithm (eACGA). We investigate the usefulness of the probabilistic models and to compare eACGA with several famous permutation-oriented EDAs on the benchmark instances of the permutation flowshop scheduling problems (PFSPs). eACGA yields better solution quality for makespan criterion when we use the average error ratio metric as their performance measures. In addition, eACGA is further integrated with well-known heuristic algorithms, such as NEH and variable neighborhood search (VNS) and it is denoted as eACGAhybrid to solve the considered problems. No matter the solution quality and the computation efficiency, the experimental results indicate that eACGAhybrid outperforms other known algorithms in literature. As a result, the proposed algorithms are very competitive in solving the PFSPs.  相似文献   

2.
Recently, a novel probabilistic model-building evolutionary algorithm (so called estimation of distribution algorithm, or EDA), named probabilistic model building genetic network programming (PMBGNP), has been proposed. PMBGNP uses graph structures for its individual representation, which shows higher expression ability than the classical EDAs. Hence, it extends EDAs to solve a range of problems, such as data mining and agent control. This paper is dedicated to propose a continuous version of PMBGNP for continuous optimization in agent control problems. Different from the other continuous EDAs, the proposed algorithm evolves the continuous variables by reinforcement learning (RL). We compare the performance with several state-of-the-art algorithms on a real mobile robot control problem. The results show that the proposed algorithm outperforms the others with statistically significant differences.  相似文献   

3.
Aims to study the advantages of using higher order statistics in estimation distribution of algorithms (EDAs). We study two EDAs with two-tournament selection for discrete optimization problems. One is the univariate marginal distribution algorithm (UMDA) using only first-order statistics and the other is the factorized distribution algorithm (FDA) using higher order statistics. We introduce the heuristic functions and the limit models of these two algorithms and analyze stability of these limit models. It is shown that the limit model of UMDA can be trapped at any local optimal solution for some initial probability models. However, degenerate probability density functions (pdfs) at some local optimal solutions are unstable in the limit model of FDA. In particular, the degenerate pdf at the global optimal solution is the unique asymptotically stable point in the limit model of FDA for the optimization of an additively decomposable function. Our results suggest that using higher order statistics could improve the chance of finding the global optimal solution.  相似文献   

4.
Space complexity of estimation of distribution algorithms   总被引:1,自引:0,他引:1  
In this paper, we investigate the space complexity of the Estimation of Distribution Algorithms (EDAs), a class of sampling-based variants of the genetic algorithm. By analyzing the nature of EDAs, we identify criteria that characterize the space complexity of two typical implementation schemes of EDAs, the factorized distribution algorithm and Bayesian network-based algorithms. Using random additive functions as the prototype, we prove that the space complexity of the factorized distribution algorithm and Bayesian network-based algorithms is exponential in the problem size even if the optimization problem has a very sparse interaction structure.  相似文献   

5.
An important problem in the study of evolutionary algorithms is how to continuously predict promising solutions while simultaneously escaping from local optima. In this paper, we propose an elitist probability schema (EPS) for the first time, to the best of our knowledge. Our schema is an index of binary strings that expresses the similarity of an elitist population at every string position. EPS expresses the accumulative effect of fitness selection with respect to the coding similarity of the population. For each generation, EPS can quantify the coding similarity of the population objectively and quickly. One of our key innovations is that EPS can continuously predict promising solutions while simultaneously escaping from local optima in most cases. To demonstrate the abilities of the EPS, we designed an elitist probability schema genetic algorithm and an elitist probability schema compact genetic algorithm. These algorithms are estimations of distribution algorithms (EDAs). We provided a fair comparison with the persistent elitist compact genetic algorithm (PeCGA), quantum-inspired evolutionary algorithm (QEA), and particle swarm optimization (PSO) for the 0–1 knapsack problem. The proposed algorithms converged quicker than PeCGA, QEA, and PSO, especially for the large knapsack problem. Furthermore, the computation time of the proposed algorithms was less than some EDAs that are based on building explicit probability models, and was approximately the same as QEA and PSO. This is acceptable for evolutionary algorithms, and satisfactory for EDAs. The proposed algorithms are successful with respect to convergence performance and computation time, which implies that EPS is satisfactory.  相似文献   

6.
In estimation of distribution algorithms (EDAs), the joint probability distribution of high-performance solutions is presented by a probability model. This means that the priority search areas of the solution space are characterized by the probability model. From this point of view, an environment identification-based memory management scheme (EI-MMS) is proposed to adapt binary-coded EDAs to solve dynamic optimization problems (DOPs). Within this scheme, the probability models that characterize the search space of the changing environment are stored and retrieved to adapt EDAs according to environmental changes. A diversity loss correction scheme and a boundary correction scheme are combined to counteract the diversity loss during the static evolutionary process of each environment. Experimental results show the validity of the EI-MMS and indicate that the EI-MMS can be applied to any binary-coded EDAs. In comparison with three state-of-the-art algorithms, the univariate marginal distribution algorithm (UMDA) using the EI-MMS performs better when solving three decomposable DOPs. In order to understand the EI-MMS more deeply, the sensitivity analysis of parameters is also carried out in this paper.  相似文献   

7.
分布估计算法综述   总被引:77,自引:1,他引:76  
分布估计算法是进化计算领域新兴起的一类随机优化算法,是当前国际进化计算领域的研究热点. 分布估计算法是遗传算法和统计学习的结合,通过统计学习的手段建立解空间内个体分布的概率模型,然后对概率模型随机采样产生新的群体,如此反复进行,实现群体的进化. 分布估计算法中没有传统的交叉、变异等遗传操作,是一种全新的进化模式;这种优化技术能够通过概率图模型对变量之间的关系进行建模,从而能有效的解决多变量相关的优化问题. 根据概率模型的复杂性,本文按照变量无关、双变量相关、多变量相关等三类分别介绍相应的分布估计算法. 作为一篇综述性文章,本文旨在全面系统的向国内读者介绍这一新技术,并总结分布估计算法的研究现状和未来的研究方向.  相似文献   

8.
Elitism-based compact genetic algorithms   总被引:1,自引:0,他引:1  
This paper describes two elitism-based compact genetic algorithms (cGAs)-persistent elitist compact genetic algorithm (pe-cGA), and nonpersistent elitist compact genetic algorithm (ne-cGA). The aim is to design efficient cGAs by treating them as estimation of distribution algorithms (EDAs) for solving difficult optimization problems without compromising on memory and computation costs. The idea is to deal with issues connected with lack of memory by allowing a selection pressure that is high enough to offset the disruptive effect of uniform crossover. The pe-cGA finds a near optimal solution (i.e., a winner) that is maintained as long as other solutions generated from probability vectors are no better. The ne-cGA further improves the performance of the pe-cGA by avoiding strong elitism that may lead to premature convergence. It also maintains genetic diversity. This paper also proposes an analytic model for investigating convergence enhancement.  相似文献   

9.
Message passing algorithms (MPAs) have been traditionally used as an inference method in probabilistic graphical models. Some MPA variants have recently been introduced in the field of estimation of distribution algorithms (EDAs) as a way to improve the efficiency of these algorithms. Multiple developments on MPAs point to an increasing potential of these methods for their application as part of hybrid EDAs. In this paper we review recent work on EDAs that apply MPAs and propose ways to further extend the useful synergies between MPAs and EDAs. Furthermore, we analyze some of the implications that MPA developments can have in their future application to EDAs and other evolutionary algorithms.  相似文献   

10.
Studies show that application of the prior knowledge in biasing the Estimation of Distribution Algorithms (EDAs), such as Bayesian Optimization Algorithm (BOA), increases the efficiency of these algorithms significantly. One of the main advantages of the EDAs over other optimization algorithms is that the former provides a trail of probabilistic models of candidate solutions with increasing quality. Some recent studies have applied these probabilistic models, obtained from previously solved problems in biasing the BOA algorithm, to solve the future problems. In this paper, in order to improve the previous works and reduce their disadvantages, a method based on Case Based Reasoning (CBR) is proposed for biasing the BOA algorithm. Herein, after running BOA for solving optimization problems, each problem, the corresponding solution, as well as the last Bayesian network obtained from the BOA algorithm, will be stored as an entry in the case-base. Upon introducing a new problem, similar problems from the case-base are retrieved and the last Bayesian networks of these solved problems are combined according to the degree of their similarity with the new problem; hence, a compound Bayesian network is constructed. The compound Bayesian network is sampled and the initial population for the BOA algorithm is generated. This network will be applied efficiently for biasing future probabilistic models during the runs of BOA for the new problem. The proposed method is tested on three well-known combinatorial benchmark problems. Experimental results show significant improvements in algorithm execution time and quality of solutions, compared to previous methods.  相似文献   

11.
Multi-armed bandits with switching penalties   总被引:2,自引:0,他引:2  
The multi-armed bandit problem with switching penalties (switching cost and switching delays) is investigated. It is shown that under an optimal policy, decisions about the processor allocation need to be made only at stopping times that achieve an appropriate index, the well-known “Gittins index” or a “switching index” that is defined for switching cost and switching delays. An algorithm for the computation of the “switching index” is presented. Furthermore, sufficient conditions for optimality of allocation strategies, based on limited look-ahead techniques, are established. These conditions together with the above-mentioned feature of optimal scheduling policies simplify the search for an optimal allocation policy. For a special class of multi-armed bandits (scheduling of parallel queues with switching penalties and no arrivals), it is shown that the aforementioned property of optimal policies is sufficient to determine an optimal allocation strategy. In general, the determination of optimal allocation policies remains a difficult and challenging task  相似文献   

12.
A theoretical analysis tool, iterated optimal stopping, has been used as the basis of a numerical algorithm for American options under regime switching (Le and Wang in SIAM J Control Optim 48(8):5193–5213, 2010). Similar methods have also been proposed for American options under jump diffusion (Bayraktar and Xing in Math Methods Oper Res 70:505–525, 2009) and Asian options under jump diffusion (Bayraktar and Xing in Math Fin 21(1):117–143, 2011). An alternative method, local policy iteration, has been suggested in Huang et al. (SIAM J Sci Comput 33(5):2144–2168, 2011), and Salmi and Toivanen (Appl Numer Math 61:821–831, 2011). Worst case upper bounds on the convergence rates of these two methods suggest that local policy iteration should be preferred over iterated optimal stopping (Huang et al. in SIAM J Sci Comput 33(5):2144–2168, 2011). In this article, numerical tests are presented which indicate that the observed performance of these two methods is consistent with the worst case upper bounds. In addition, while these two methods seem quite different, we show that either one can be converted into the other by a simple rearrangement of two loops.  相似文献   

13.
Estimation of distribution algorithms (EDAs) solve an optimization problem heuristically by finding a probability distribution focused around its optima. Starting with the uniform distribution, points are sampled with respect to this distribution and the distribution is changed according to the function values of the sampled points. Although there are many successful experiments suggesting the usefulness of EDAs, there are only few rigorous theoretical results apart from convergence results without time bounds. Here we present first rigorous runtime analyses of a simple EDA, the compact genetic algorithm (cGA), for linear pseudo-Boolean functions on n variables. We prove a general lower bound for all functions and a general upper bound for all linear functions. Simple test functions show that not all linear functions are optimized in the same runtime by the cGA.This research was partly supported by the Deutsche Forschungsgemeinschaft as part of the Collaborative Research Center “Computational Intelligence”(531).  相似文献   

14.
Inexact graph matching by means of estimation of distribution algorithms   总被引:3,自引:0,他引:3  
Endika  Pedro  Isabelle  Aymeric  Claudia   《Pattern recognition》2002,35(12):2867-2880
Estimation of distribution algorithms (EDAs) are a quite recent topic in optimization techniques. They combine two technical disciplines of soft computing methodologies: probabilistic reasoning and evolutionary computing. Several algorithms and approaches have already been proposed by different authors, but up to now there are very few papers showing their potential and comparing them to other evolutionary computational methods and algorithms such as genetic algorithms (GAs). This paper focuses on the problem of inexact graph matching which is NP-hard and requires techniques to find an approximate acceptable solution. This problem arises when a nonbijective correspondence is searched between two graphs. A typical instance of this problem corresponds to the case where graphs are used for structural pattern recognition in images. EDA algorithms are well suited for this type of problems.

This paper proposes to use EDA algorithms as a new approach for inexact graph matching. Also, two adaptations of the EDA approach to problems with constraints are described as two techniques to control the generation of individuals, and the performance of EDAs for inexact graph matching is compared with the one of GAs.  相似文献   


15.
Estimation of distribution algorithms with Kikuchi approximations   总被引:2,自引:0,他引:2  
The question of finding feasible ways for estimating probability distributions is one of the main challenges for Estimation of Distribution Algorithms (EDAs). To estimate the distribution of the selected solutions, EDAs use factorizations constructed according to graphical models. The class of factorizations that can be obtained from these probability models is highly constrained. Expanding the class of factorizations that could be employed for probability approximation is a necessary step for the conception of more robust EDAs. In this paper we introduce a method for learning a more general class of probability factorizations. The method combines a reformulation of a probability approximation procedure known in statistical physics as the Kikuchi approximation of energy, with a novel approach for finding graph decompositions. We present the Markov Network Estimation of Distribution Algorithm (MN-EDA), an EDA that uses Kikuchi approximations to estimate the distribution, and Gibbs Sampling (GS) to generate new points. A systematic empirical evaluation of MN-EDA is done in comparison with different Bayesian network based EDAs. From our experiments we conclude that the algorithm can outperform other EDAs that use traditional methods of probability approximation in the optimization of functions with strong interactions among their variables.  相似文献   

16.
肖鸣宇  沈正翔 《软件学报》2014,25(5):1051-1060
研究了带有多折扣选项的滑雪租赁问题(ski-rental problem with multiple discount options,简称多折扣租赁问题)的离线和在线算法.多折扣租赁问题是经典的滑雪租赁问题的一个自然扩展,在现实生活中有着非常广泛的应用.在多折扣租赁问题中,除了租借一次装备和购买滑雪装备的选项以外,还存在多次租借装备的选项,这种多次租借可以得到折扣.一次租借次数越多,折扣就越大.规则价格子问题则是多折扣租赁问题中要求各选项的价格成倍数关系的一类子问题.证明了多折扣租赁问题的离线问题是NP难的,但对于规则价格子问题的离线问题,给出了一种线性时间算法.基于对离线问题的算法分析,给出了规则价格子问题的一个2倍竞争比的在线策略,同时证明了该问题的最优竞争比是2.基于规则价格子问题的在线策略,又给出了多折扣租赁问题的一个新的4倍竞争比的在线策略,该竞争比同样达到了最优.最后,通过对现实生活中的数据和随机数据进行实验,说明所给出的在线算法具有实际应用价值.  相似文献   

17.
We discuss the solution of complex multistage decision problems using methods that are based on the idea of policy iteration(PI),i.e.,start from some base policy and generate an improved policy.Rollout is the simplest method of this type,where just one improved policy is generated.We can view PI as repeated application of rollout,where the rollout policy at each iteration serves as the base policy for the next iteration.In contrast with PI,rollout has a robustness property:it can be applied on-line and is suitable for on-line replanning.Moreover,rollout can use as base policy one of the policies produced by PI,thereby improving on that policy.This is the type of scheme underlying the prominently successful Alpha Zero chess program.In this paper we focus on rollout and PI-like methods for problems where the control consists of multiple components each selected(conceptually)by a separate agent.This is the class of multiagent problems where the agents have a shared objective function,and a shared and perfect state information.Based on a problem reformulation that trades off control space complexity with state space complexity,we develop an approach,whereby at every stage,the agents sequentially(one-at-a-time)execute a local rollout algorithm that uses a base policy,together with some coordinating information from the other agents.The amount of total computation required at every stage grows linearly with the number of agents.By contrast,in the standard rollout algorithm,the amount of total computation grows exponentially with the number of agents.Despite the dramatic reduction in required computation,we show that our multiagent rollout algorithm has the fundamental cost improvement property of standard rollout:it guarantees an improved performance relative to the base policy.We also discuss autonomous multiagent rollout schemes that allow the agents to make decisions autonomously through the use of precomputed signaling information,which is sufficient to maintain the cost improvement property,without any on-line coordination of control selection between the agents.For discounted and other infinite horizon problems,we also consider exact and approximate PI algorithms involving a new type of one-agent-at-a-time policy improvement operation.For one of our PI algorithms,we prove convergence to an agentby-agent optimal policy,thus establishing a connection with the theory of teams.For another PI algorithm,which is executed over a more complex state space,we prove convergence to an optimal policy.Approximate forms of these algorithms are also given,based on the use of policy and value neural networks.These PI algorithms,in both their exact and their approximate form are strictly off-line methods,but they can be used to provide a base policy for use in an on-line multiagent rollout scheme.  相似文献   

18.
In this work we consider the problem of learning the structure of Markov networks from data. We present an approach for tackling this problem called IBMAP, together with an efficient instantiation of the approach: the IBMAP-HC algorithm, designed for avoiding important limitations of existing independence-based algorithms. These algorithms proceed by performing statistical independence tests on data, trusting completely the outcome of each test. In practice tests may be incorrect, resulting in potential cascading errors and the consequent reduction in the quality of the structures learned. IBMAP contemplates this uncertainty in the outcome of the tests through a probabilistic maximum-a-posteriori approach. The approach is instantiated in the IBMAP-HC algorithm, a structure selection strategy that performs a polynomial heuristic local search in the space of possible structures. We present an extensive empirical evaluation on synthetic and real data, showing that our algorithm outperforms significantly the current independence-based algorithms, in terms of data efficiency and quality of learned structures, with equivalent computational complexities. We also show the performance of IBMAP-HC in a real-world application of knowledge discovery: EDAs, which are evolutionary algorithms that use structure learning on each generation for modeling the distribution of populations. The experiments show that when IBMAP-HC is used to learn the structure, EDAs improve the convergence to the optimum.  相似文献   

19.
An optimal algorithm based on branch-and-bound approach is presented in this paper to determine lot sizes for a single item in material requirement planning environments with deterministic time-phased demand and constant ordering cost with zero lead time, where all-units discounts are available from vendors and backlog is not permitted. On the basis of the proven properties of optimal order policy, a tree-search procedure is presented to construct the sequence of optimal orders. Some useful fathom rules have been proven, which make the algorithm very efficient. To compare the performance of this algorithm with the other existing optimal algorithms, an experimental design with various environments has been developed. Experimental results show that the performance of our optimal algorithm is much better than the performance of other existing optimal algorithms. Considering computational time as the performance measure, this algorithm is considered the best among the existing optimal algorithms for real problems with large dimensions (i.e. large number of periods and discount levels).  相似文献   

20.
Estimation of distribution algorithms (EDAs) are stochastic optimization techniques that explore the space of potential solutions by building and sampling explicit probabilistic models of promising candidate solutions. While the primary goal of applying EDAs is to discover the global optimum or at least its accurate approximation, besides this, any EDA provides us with a sequence of probabilistic models, which in most cases hold a great deal of information about the problem. Although using problem-specific knowledge has been shown to significantly improve performance of EDAs and other evolutionary algorithms, this readily available source of problem-specific information has been practically ignored by the EDA community. This paper takes the first step toward the use of probabilistic models obtained by EDAs to speed up the solution of similar problems in the future. More specifically, we propose two approaches to biasing model building in the hierarchical Bayesian optimization algorithm (hBOA) based on knowledge automatically learned from previous hBOA runs on similar problems. We show that the proposed methods lead to substantial speedups and argue that the methods should work well in other applications that require solving a large number of problems with similar structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号