首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
采用电化学沉积法通过在电解槽中添加SiC颗粒制备Ni-SiC复合镀层。由于第二相颗粒SiC的加入改善了镀层的性能,使之具有高硬度、耐磨性和耐腐蚀性能等。Ni-SiC复合电镀改善镀层的组织结构并显著提高镀层的质量。采用NiSO4·6H2O(35 g/100 mL),NiCl2·6H2O(4 g/100 mL),H3BO3(3.5 g/100 mL),十二烷基硫酸钠(0.5 g/100 mL),SiC颗粒(0.4~1.0 g/100 mL)体系,在pH值为4,温度35~50 ℃时,通过电化学沉积法制备Ni-SiC复合镀层。实验探究了温度、电流密度、镀液中碳化硅颗粒含量以及超声波分散时间对镀层中SiC复合量的影响。通过扫描电镜和XRD对镀层进行分析,结果表明:在温度为35~50 ℃之间复合镀层中SiC的量随温度的增加呈现先增加后减少的趋势;在电流密度为0.026~0.06 A/cm2之间,复合镀层中SiC的含量随电流密度的增加呈现先增加后减小的趋势;镀液中SiC量在0.4~1.0 g/100 mL之间时,镀层中SiC含量随着镀液中SiC含量的增加而增加,超过一定值(0.6 g/100 mL)增加幅度变小;超声波分散时间在10~50 min之间, 镀层中SiC的含量随时间的增加而先增加后减少。镀层中碳化硅颗粒均匀分布有利于晶粒的细化  相似文献   

2.
采用复合电镀在钛合金表面制备了Ni-SiC复合镀层,并利用人工神经网络预测了复合电镀工艺参数对镀层组织结构的影响。结果表明:增加镀液中SiC颗粒含量和搅拌速率均会明显增加复合镀层中SiC的含量,从而增加镀层的硬度;增加阴极电流密度会增加镀层的生长速率,但过高的阴极电流密度导致镀层组织产生裂纹。采用人工神经网络模型对不同复合电镀工艺参数所制备的Ni-SiC复合镀层的厚度和硬度进行了预测,所获得的预测结果与实验结果吻合较好,偏差处于合理范围。  相似文献   

3.
采用双脉冲复合电镀技术,在瓦特型镀液中,制备了含微/纳米SiC颗粒的Ni基复合镀层,研究镀液中纳米SiC添加量对复合镀层微观形貌、摩擦性能和抗氧化性能的影响。结果表明:在SiC颗粒(5μm)浓度为10 g/L的镀液中,添加纳米SiC和Ni-SiC复合镀层镍择优取向由晶面(200)转变为晶面(111);当SiC(40μm)浓度为4.0 g/L时,复合镀层显微硬度最大,为456 HV;复合镀层摩擦因数最小,平均值为0.28,为微米复合镀层的1/2;经900℃氧化100 h后,氧化质量增加为6.025 mg/cm2,为微米复合镀层的1/3。  相似文献   

4.
在不同镀液温度下直流电沉积制备Ni-SiC纳米复合镀层,利用X-射线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱仪(EDX)对镀层的相组成、表面形貌、成分等进行表征,考察镀液温度对镀层的微观形貌、晶体生长和镀层中SiC含量等影响。结果表明:随着温度升高,Ni-SiC晶粒从无序取向渐变为(220)择优取向,到70℃时(220)面的晶面织构系数达到最大值;镀层中纳米SiC含量随着温度的升高先增大后减少,在60℃时达到最大值;纳米SiC微粒的加入可抑制镍晶的晶粒生长,从而细化晶粒,并使镍晶产生晶格畸变;Ni-SiC纳米复合镀层的表面形貌随温度的升高,表面颗粒更加细化和均匀。  相似文献   

5.
沈雁  刘桂香  王红星 《表面技术》2017,46(10):50-59
目的制备性能良好的Ni-SiC复合镀层,以提高海洋平台系泊缆用22MnCrNiMo钢的耐腐蚀性和寿命。方法采用基于离心力的双脉冲电沉积技术,在海洋平台系泊缆用22MnCrNiMo钢表面制备Ni-SiC纳米复合镀层。通过扫描电子显微镜和光学显微镜对复合镀层的微观形貌、组织结构进行分析。利用静态浸泡腐蚀试验分析了镀层的耐腐蚀性能。结果添加0.2g/L的SDS时,纳米SiC悬浮液具有最佳悬浮性能。纳米SiC颗粒的质量浓度为2.0~4.0g/L时,有利于获得优异的Ni-SiC镀层表面形貌。随着占空比的增加,复合镀层表面的晶粒尺寸逐渐减小,当占空比为50%时,可以获得最佳的Ni-SiC镀层形貌。当添加2.0g/L的纳米SiC颗粒时,镀层的腐蚀质量损失最小,为2.867mg/cm~2;当占空比为50%时,镀层的腐蚀质量损失最小,为3.059mg/cm~2。结论添加分散剂后,镀液中的纳米SiC颗粒沉降性能变好;添加纳米SiC颗粒后,镀层的耐腐蚀性能增强。纳米SiC颗粒的添加量和占空比的大小对复合镀层的组织结构和耐腐蚀性能有重要影响。  相似文献   

6.
主要以硫酸镍、氯化镍、磷酸和碳化硅为基本组分的镀液,通过采用电镀法在铝合金基体上获得Ni-SiC复合镀层,着重探讨搅拌速度对铝合金表面电镀Ni-SiC的影响,并得出最佳的搅拌速度.结果表明:搅拌速度对镀层性能有很大影响,当搅拌速度为300r/min时,镀速最大,而且镀层均匀、紧凑、细小,耐腐蚀性能良好,镀层中SiC含量也达到最大.  相似文献   

7.
用电沉积方法在铜表面制备了Ni-ZrO2纳米复合镀层。研究了工艺参数对复合镀层的硬度、耐磨性、耐蚀性的影响。结果表明,镀层硬度随阴极电流密度、镀液温度的增大均呈现先增大后减小的趋势;而随镀液中纳米ZrO2的添加量增加,镀层的硬度逐渐增大;镀层的耐磨性随这几个工艺参数的增加先增加后减小;镀层的耐蚀性随着电流密度的升高先下降再升高,随着镀液中纳米ZrO2添加量、镀液温度的增加,镀层的耐蚀性先升高再下降。本工作中最佳的工艺参数为纳米ZrO2添加量8g/L,阴极电流密度3A/dm2,镀液温度50℃左右。  相似文献   

8.
配制了氨基磺酸镍电镀液,找出了最佳镀液成分和工艺参数。使用扫描电子显微镜、超景深显微镜、库仑测厚仪、XRD衍射仪和显微硬度计对镀层进行了分析。结果表明,镀液组成最佳为氨基磺酸镍360g/L、氯化镍20g/L、硼酸38g/L;镀液温度范围在45~60℃,电流密度为5~18A/dm^3。复合镀镍/碳化硅的最大电流密度为15A/dm^3。电流密度15A/dm^2的镀速为113μm/h,镀层硬度为638HV。  相似文献   

9.
铸铁基Ni—SiC复合电镀工艺的研究   总被引:1,自引:0,他引:1  
本文采用电镀技术制备了铸铁基Ni-SiC复合镀层,制定了电镀工艺,研究了基体表面的处理状况和镀液pH值对复合镀层的质量以及SiC颗粒的浓度和粒度对显微组织的影响.研究发现:镀层表面粗糙度 Ra小于0.8 μm,复合镀层质量以及结合力好;pH=4~4.5时,镀层的质量较好.在SiC浓度相同的条件下,SiC粒度较大的镀层表面较粗糙,部分SiC颗粒没有被基质金属Ni完全包裹住;在SiC粒度相同的条件下,SiC浓度增加,镀层中的SiC颗粒含量随之增加.  相似文献   

10.
研究镀液中纳米C颗粒浓度、电流密度、温度、搅拌方式等对复合电沉积Cr-C镀层性能的影响.利用扫描电镜(SEM)和X射线衍射仪(XRD)分析镀层表面显微组织及相结构,利用显微硬度计对复合镀层进行显微硬度测试.结果表明,调整工艺参数可获得表面结晶均匀致密的黑Cr-C纳米复合镀层,显微硬度最高达10.8 GPa,镀层中颗粒体积分数最高达8.82%.电沉积复合镀最佳工艺参数是:电流密度为100 A/dm2、温度为15 ℃、镀液中纳米C颗粒含量为10 g/L,采用超声波分散辅助慢速机械搅拌.  相似文献   

11.
提出通过掺杂SiC颗粒来减小Ni微电铸层内应力的新方法,基于UV-LIGA工艺制作了纯镍电铸层和Ni-SiC复合电铸层,采用X射线衍射法测量微电铸层的内应力,分析SiC颗粒对微电铸层内应力的影响效果。利用L_9(3~4)正交试验考查了铸液中SiC浓度、电流密度、搅拌转速及电铸温度等工艺参数对复合电铸层内应力的影响。结果表明:掺杂SiC颗粒能有效减小微电铸层内应力,电流密度和铸液中SiC浓度对内应力的影响大于搅拌转速和电铸温度。复合电铸层内应力实验的最优工艺参数为:SiC浓度20 g/L,电流密度1 A/dm~2,磁力搅拌转速600 r/min,电铸温度50℃。  相似文献   

12.
采用复合化学镀方法在铝合金微弧氧化陶瓷膜表面制备了Ni-P-SiC复合镀层,研究了镀液中SiC浓度对复合镀层物相、显微组织、沉积速率的影响,并测试了复合涂层(陶瓷膜/复合镀层)的结合力。结果表明:Ni-P-SiC复合镀层为非晶态结构,与陶瓷膜的界面清晰,完全封闭了微弧氧化陶瓷膜表面的微孔;随着镀液中SiC含量的增加,复合镀层沉积速率降低,SiC共析量则是先快速增大,当含量达到16 g/L后就基本保持不变。  相似文献   

13.
Ni-SiC纳米复合镀工艺及性能研究   总被引:13,自引:0,他引:13  
 在纯铜板上制备了含有纳米SiC的镍基复合镀层,利用扫描电镜观察镀层表面显微组织.研究了含量、阴极电流密度、pH值、温度、时间、搅拌等主要工艺参数对纳米SiC在复合电沉积中沉积量的影响.并用MM-200磨损试验机检测了所得复合镀层的耐磨性能.X-ray衍射证明镀层中存在纳米SiC粉末;纳米SiC镍基复合镀层成型工艺参数为:电流密度3 A/dm2~15 A/dm2,温度30℃~60℃,pH值3~4,超声波辅助慢速机械搅拌;最佳含量40 g/L;纳米Ni-SiC复合镀层的耐磨性能优于纳米Ni-Al2O3复合镀层及纯Cr镀层.    相似文献   

14.
金刚石颗粒复合量是衡量复合镀层性能好坏的重要指标。选用烷基溴化物作为添加剂,研究不同体积分数添加剂对金刚石颗粒复合量的影响,优选出添加剂最佳体积分数;同时,深入研究电流密度、金刚石颗粒质量浓度对金刚石颗粒的影响。研究结果表明:随着添加剂体积分数的提高,金刚石颗粒复合量先增后减,体积分数为0.8mL/L时,金刚石颗粒复合量最佳;控制镀液中金刚石颗粒质量浓度在2.5~40g/L范围,金刚石颗粒复合量不断增加;电流密度对金刚石颗粒复合量的影响较为明显,随着电流密度增大,金刚石颗粒复合量呈现先快速增加后呈缓慢下降趋势。  相似文献   

15.
目的提高Ni-P-PTFE复合镀层的防垢性。方法采用化学镀的方法,在45#碳钢表面制备NiP-PTFE复合镀层,研究镀液中活性剂和PTFE(聚四氟乙烯)含量对复合镀层中PTFE含量、镀层结垢速率的影响,从而得到最佳施镀参数。结果随着活性剂含量的增加,镀层中PTFE含量先上升,后下降,而镀层的结垢率呈现出先下降、后上升的变化趋势。结论当镀液中活性剂含量为0.3 g/L,PTFE乳液添加量为6 mL/L时,镀层的结垢速率最低,为0.004 85 g/(m2·h),此时镀层的防垢性能最佳。  相似文献   

16.
碳纳米管铅锡复合减摩镀层的内应力研究   总被引:1,自引:0,他引:1  
采用复合电沉积方法在紫铜片上制备碳纳米管铅锡合金复合减摩镀层;用阴极弯曲法研究了电流密度和镀液温度对碳纳米管铅锡复合镀层内应力的影响;在不同碳纳米管浓度的镀液中制备了复合镀层的试样,用X射线衍射法测定了各复合镀层的内应力.结果表明,碳纳米管铅锡合金复合镀层的内应力随电流密度的增加而升高,但随镀液温度的升高而降低.保证电流密度和镀液温度不变,碳纳米管的含量为2g/L,复合镀层的内应力降至最低;碳纳米管在镀层中的弥散分布起到了应力传递作用,减少了应力集中而产生的微裂纹.  相似文献   

17.
通过实验,确定了Ni-Ti3SiC2镀层的最佳制备工艺:pH值4、阴极电流密度3 A/dm2、镀液温度40℃、Ti3SiC2含量40 g/L,镀液浓度250 g/L。利用XRD、SEM、摩擦磨损试验机等系统地研究了镍基摩擦复合镀层的形貌、结构和摩擦磨损等性能。结果表明:在相同载荷和磨损时间下,Ni-Ti3SiC2复合镀层的摩擦系数和磨损量都明显小于热处理前的镀层。与Ni镀层相比,Ni-Ti3SiC2复合镀层致密、光滑、均匀,而且具有优良的减摩耐磨综合性能。  相似文献   

18.
目的提高连铸坯质量,延长结晶器的服役时间,节约铜资源。方法采用纳米复合镀技术在结晶器铜板表面制备了Ni/Al_2O_3纳米复合镀层,并通过扫描电镜(SEM)观察了复合镀层表面形貌。采用单因素变量法研究了镀液中纳米Al_2O_3添加量、阴极电流密度及镀液温度等对纳米复合镀层显微硬度的影响。对结晶器铜板表面的纯Ni镀层和纳米复合镀层进行了摩擦磨损实验。结果在结晶器铜板表面制备出了高硬度、耐磨损的纳米复合镀层。随着镀液中纳米颗粒添加量的增加,镀层的硬度先升高后降低,且当纳米颗粒添加量为40 g/L时,复合镀层的显微硬度达到最大值384HV。因镀液中纳米颗粒的存在,随着电流密度和镀液温度的变化,纳米复合镀层的硬度变化不大。在相同的摩擦磨损条件下,纳米复合镀层和纯Ni镀层的摩擦系数分别约为0.41和0.7,纳米复合镀层的磨损量约为纯Ni镀层的1/2。结论在Ni基镀层中加入纳米Al_2O_3材料,能显著地提高复合镀层的硬度、耐磨损性能。  相似文献   

19.
镀液中SiC含量对化学镀Ni-P-SiC复合镀层结构和性能的影响   总被引:2,自引:0,他引:2  
利用扫描电镜(SEM)、X射线衍射(XRD)和腐蚀电化学测试研究了镀液中SiC含量对化学镀Ni-P-SiC复合镀层结构和耐蚀性能的影响。结果表明,随着镀液中SiC含量的增加,镀层沉积速率和镀层中SiC共沉积量呈现先增加后降低的趋势,镀层中P含量和沉积胞状颗粒尺寸逐渐降低。电化学测试结果表明,镀层中SiC共沉积量的变化不影响镀层腐蚀反应机理,但是镀层耐蚀性随SiC共沉积量的增加而降低。结构分析显示,NiP-SiC镀层致密性良好,基本完全覆盖了镁合金基体。  相似文献   

20.
杨建桥  梁博 《腐蚀与防护》2008,29(3):147-148
通过在弹簧钢表面预镀铜,改进了弹簧钢表面复合电镀CrSiC镀层的结合性能.同时研究了电流密度、温度以及碳化硅微粒的粒度和浓度等工艺参数对镀层性能的影响.确定了复合镀的最佳工艺为:粒度为40 um的碳化硅35g/L,电镀温度45℃,电流密度30 A/dm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号