首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过考察工艺条件对丙烯环氧化过程中使用的甲醇溶剂加氢精制反应的影响,得到加氢精制后甲醇中不同杂质的质量分数随工艺条件的变化规律。结果表明:在合适的操作条件下,甲醇溶液中的醛类、双氧水和硝基化合物可以通过加氢精制完全去除,丙酮的去除率可达到90%以上,缩醛酮只有在较高的反应温度下才会发生部分转化,丙二醇单甲醚类杂质不发生加氢反应。Ni基催化剂可有效促进双氧水的热分解反应。含有双氧水的甲醇溶液加氢后,未在排放的尾气中发现氧气生成,表明双氧水和氢气可能通过在催化剂表面生成的吸附产物Ni0OH和Ni0H直接生成水,也可能通过氧气在催化剂表面上生成Ni0O,再与Ni0H反应生成水。  相似文献   

2.
新型固定床Raney Ni催化剂的苯加氢活性及耐硫性   总被引:2,自引:1,他引:1  
将新型固定床Raney Ni催化剂应用于苯加氢反应,研究了反应温度、氢气压力、液态空速、氢与苯的摩尔比及催化剂预处理温度对苯加氢反应的影响,在适宜的条件下进行了200h连续运转,并与负载型Ni催化剂的活性进行了对比。实验结果表明,新型固定床Raney Ni催化剂具有较大的活性金属Ni比表面积,当氢与苯的摩尔比为6∶1时,在80~120℃、0.5~1.0MPa、液态空速2.0h-1的缓和条件下即可实现苯的完全转化。新型固定床Raney Ni催化剂具有较好的耐硫性能,每毫升催化剂可耐受8 001μg的硫,远优于负载型Ni催化剂。X射线衍射和扫描电子显微镜-能量色散X射线分析结果表明,硫、氯等杂质吸附中毒及反应温度过高使Ni晶粒聚结是新型固定床Raney Ni催化剂失活的主要原因。  相似文献   

3.
在甲醇溶剂中对氯丙烯与双氧水直接环氧化反应的TS-1分子筛的失活原因进行了研究。重点考察了原料中杂质、反应体系酸性、反应温度对该分子筛活性稳定性的影响以及失活后的醇洗再生效果。结果表明.原料中杂质对分子筛的活性稳定性没有明显影响;反应体系在pH-3时分子筛的催化稳定性最好;升高反应温度可以提高分子筛的活性稳定性;TS-1分子筛的失活是环氧氯丙烷开环副产物在分子筛孔道内滞留逐渐堵塞孔道造成的,通过醇洗再生可以基本恢复失去的活性。  相似文献   

4.
采用水热法制备了胶态碳微球(CMS),进一步制备了碳微球负载镍催化剂(Ni/CMS), 并进行了FTIR、XRD、SEM、TEM和N2吸附表征。对Ni/CMS催化顺酐(MA) 选择性加氢制备丁二酸酐(SA) 进行了考察,结果表明,以葡萄糖为碳源,经过500 ○C焙烧制备的Ni/CMS催化剂表现最佳的性能,氢气压力、反应温度和反应时间对加氢反应中顺酐转化率有很大影响。以乙酸酐作溶剂,在90 ○C、1.0 MPa H2压力、反应3小时的温和条件下,顺酐在Ni/CMS催化剂上转化率达到98.4%,丁二酸酐选择性为100%。  相似文献   

5.
 研究了以改性骨架Ni催化剂液相催化乙腈加氢制备乙胺的工艺. 考察了Ti改性骨架Ni催化剂中Ti/Ni摩尔比, 反应体系中NaOH助剂的加入量和加氢反应温度、H2压力、搅拌速率等因素对改性骨架Ni催化乙腈液相加氢制备乙胺反应的影响. 确定了Ni改性骨架Ni催化剂最适宜的Ti/Ni摩尔比和催化乙腈加氢制备乙胺的最佳工艺条件, 并初步探讨了Ti改性骨架Ni催化剂对乙腈催化加氢反应的影响机制. 结果表明, 在Ti/Ni摩尔比为0.012的改性骨架Ni催化剂作用下, 以水作溶剂, NaOH助剂的加入量为0.20g/l, 在反应温度333~343K、H2压力1.0MPa、搅拌速率1000r/min的反应条件下, 乙腈的转化率达到100%, 乙胺的选择性可达75.6%. 此外, 还根据Ti改性骨架Ni催化剂液相催化乙腈加氢反应中重复使用的情况考察了其稳定性.  相似文献   

6.
水蒸气转化制氢,硫是最常见的转化催化剂毒物,因此在进人转化反应之前加ZnO脱硫的效果直接影响制氢装置的正常生产。分析了原料中杂质对脱硫的影响,其中O2,CO2,CO等杂质在加氢过程中生成水,从而影响ZnO的脱H2S的平衡吸收反应,从而对加氢脱硫效果产生影响;氨则破坏加氢催化剂的活性中心,使其有机硫无法转化为无机硫;而铁锈则是生成的金属硫化物,带人转化部分,在转化的条件下还原成硫化氢,使转化催化剂发生硫中毒。实际生产证明,原料加氢脱硫效果好,下游预转化和转化催化剂的活性高,就能保证制氢装置长周期运行,所以应做好炼油厂制氢原料的选择,避免带人以上杂质。  相似文献   

7.
浸渍法制备负载型Ni/SiO2与Ni/γ-Al2O3催化剂,采用透射电镜(TEM)、X射线衍射(XRD)、TPR和H2-TPD分别表征催化剂形貌、晶体形态、组分价态以及H2吸附能力,考察了催化剂用于二聚酸加氢反应的性能。实验结果表明:Ni组分在载体表面均匀分散,粒径8~16 nm,颗粒表面存在单质与氧化态,Ni负载量为30%的Ni/γ-Al2O3催化剂具有最大H2吸附量;30%Ni/γ-Al2O3催化剂加氢活性最高,在氢分压1.8 MPa、反应温度180℃、反应时间6 h的优化条件下,二聚酸转化率为98.3%;催化剂稳定性好,反应10次后,二聚酸转化率将为95.6%,加氢产物氢化二聚酸碘值6 g/100 g。  相似文献   

8.
Ni/SiO_2催化剂上月桂腈的加氢反应   总被引:2,自引:0,他引:2  
用溶胶-凝胶法制备了一系列负载型Ni/SiO2催化剂,采用X射线衍射、透射电子显微镜、低温N2吸附-脱附和H2吸附技术对催化剂进行了表征,并考察了该系列催化剂用于月桂腈加氢反应的性能。表征结果显示,载体SiO2及催化剂试样的孔径为5~10nm,Ni以金属单质或氧化态形式均匀分散在载体表面,颗粒粒径为5~15nm。活性评价结果表明,当Ni/SiO2催化剂中Ni的质量分数为28%时,催化活性最高,在H2分压2MPa、反应温度80℃、反应时间30min、搅拌转速700r/min的优化反应条件下,月桂腈的转化率为91.6%,伯胺的选择性为99.4%;该催化剂的稳定性好,反应20次后,月桂腈的转化率由91.6%降为88.5%,伯胺的选择性维持在98.0%以上。  相似文献   

9.
采用非晶态镍催化剂、以无水乙醇为溶剂,在高压反应釜中进行了戊二腈催化加氢制备戊二胺的实验,考察了催化剂和助催化剂用量(均为质量分数,基于戊二腈)、反应温度、反应压力、加入液氨等因素对该反应的影响。实验结果表明,在非晶态Fe-Mo-Ni-Al催化剂用量15%、NaOH助催化剂用量0.25%、戊二腈与乙醇的体积比1:5、反应压力3MPa、反应温度70℃的优化反应条件下,戊二腈的转化率达100.0%,戊二胺的选择性达66.8%。非晶态镍催化剂上戊二腈催化加氢制备戊二胺的反应历程为:首先戊二腈催化加氢生成5-氨基戊腈,然后5-氨基戊腈催化加氢生成目标产物戊二胺和副产物六氢吡啶。  相似文献   

10.
分别以次磷酸(H3PO2)和氢氧化镍为磷源和镍源,采用低温H2等离子体还原法制备体相Ni2P,并研究其在加氢脱硫反应(HDS)中的催化性能。考察了等离子体电源输入电压的升高速率、还原气体(H2)流速、还原终电压和还原时间等因素对Ni2P的形成及其HDS催化性能的影响。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)和电感耦合等离子体发射光谱(ICP-AES)等手段对所制备的Ni2P样品进行分析表征,以二苯并噻吩(DBT)的十氢萘溶液(质量分数0.8%)为原料评价了Ni2P催化剂的HDS活性。结果表明,以H3PO2为磷源制备Ni2P过程中,H2等离子体还原条件控制对Ni2P单一晶相的形成非常重要。在非最佳还原条件下,所制备的Ni2P样品中会出现Ni2P4O12?10H2O、H3PO4和Ni(PO3)2等含磷杂质,这些杂质会抑制Ni2P的HDS活性。水洗可除去Ni2P中部分含磷杂质,催化剂的反应活性提高不明显;氨水洗涤可有效除去大部分含磷杂质,Ni2P催化剂的反应活性会有明显的提高。因此,Ni2P催化剂合成过程中形成的含磷杂质是影响其催化性能的一个重要因素,选择适宜的制备条件抑制含磷杂质的生成有助于增强催化性能。  相似文献   

11.
镍基催化剂催化模型化合物中异戊二烯加氢性能   总被引:4,自引:1,他引:3  
郑彦彬  黄星亮 《石油化工》2003,32(12):1024-1027
异戊二烯在镍基催化剂作用下可深度加氢为异戊烷。选用适当预处理剂(如含硫化合物)对催化剂进行预处理后,可使异戊二烯高选择性地加氢为单烯烃。实验结果表明,在液态空速为36h-1时,经过预处理后催化剂的加氢选择性比新鲜催化剂有很大提高,异戊烷选择性从61 04%下降到0,单烯烃总选择性由31 96%升高到95 27%。异戊二烯在镍基催化剂作用下的加氢反应机理为连串反应机理。异戊二烯在催化剂表面上形成1,4-吸附体和π-烯丙基吸附体,并以前者为主。镍基催化剂经过硫化物预处理后,并未改变异戊二烯加氢反应机理。  相似文献   

12.
采用量子化学理论计算方法,对S Zorb脱硫反应机理进行了深入研究。结果表明,S Zorb技术的工艺过程实质上是高选择性催化加氢超深度脱硫过程,而不是简单的吸附过程。在S Zorb技术中,通过在加氢催化剂中添加H2S吸收组分ZnO,可有效地转移加氢脱硫过程中产生的H2S,建立一个H2S分压极低的反应环境,避免H2S与汽油中高辛烷值烯烃组分生成硫醇的副反应,同时使催化剂活性金属Ni处于零价态而具有对噻吩类含硫化合物很高的吸附活性,但对高辛烷值烯烃、芳烃组分仅有很低的吸附活性。在此基础上,提出了催化加氢-H2S吸收转移协同作用的催化加氢吸附脱硫机理,并指出保持催化剂中Ni处于零价态避免生成NiS是提高催化加氢脱硫选择性的关键。工业应用结果表明,S Zorb 技术在实现超深度脱硫的同时具有很好的辛烷值保留能力。  相似文献   

13.
在TS-1分子筛催化作用下,3-氯丙烯与过氧化氢能够直接反应生成环氧氯丙烷,丙酮对氯丙烯和过氧化氢混合体系具有兼溶作用,在搅拌速率大于300 r/min、反应时间60 min、反应温度55~70℃、3-氯丙烯与过氧化氢摩尔比1.5的条件下,过氧化氢转化率大于97%,环氧氯丙烷选择性达到95%以上。与甲醇作为溶剂相比,单位质量丙酮的兼溶能力低于甲醇,用量比甲醇增加20%,但丙酮的蒸发热只有甲醇的82.4%,丙酮回收和循环利用的能耗与甲醇相当。丙酮作溶剂时环氧化体系主要的副反应是环氧氯丙烷的水解反应,而甲醇作溶剂时除环氧氯丙烷的水解开环反应外,还有醇解开环反应,副产物种类和量更多。  相似文献   

14.
采用吸附法制备了过渡金属改性的组合型Pt-M/C(M=Fe,Sn,Ce,Ni;C表示活性炭)催化剂,通过TEM和XPS方法对催化剂的表面形态、金属负载量、金属电子价态及Pt纳米颗粒的分布进行了表征;以邻氯硝基苯催化加氢合成邻氯苯胺为探针反应,考察了Pt-M/C催化剂的选择性加氢性能。实验结果表明,Fe助剂的改性效果最佳,当m(Fe)∶m(Pt)=2时,Pt-M/C催化剂具有较佳的催化性能,在1.0 MPa、60℃的反应条件下,邻氯硝基苯转化率为100%,转换频率为78 s-1,邻氯苯胺的选择性高达99.5%。向反应体系中引入Fe3+也能较好地提高Pt/C催化剂的加氢性能,但会引入杂质,降低产物的品质。  相似文献   

15.
以沸程为155~220℃的裂解制乙烯装置副产的裂解C9馏分为原料,在实验室依次进行了蒸馏切割预处理、加氢催化剂的对比评价及加氢产品调合汽油试验,分别就C9馏分的原料油性质、加氢工艺技术、催化剂性能及加氢产品利用方案进行了研究。在200 L蒸馏装置上的切除了C9馏分中的重组分及有害杂物,其蒸馏切割产品可以做为较好的加氢原料;通过加氢评价试验的产品性质、入口温度、床层温升等方面对比分析可以看出,L系列C9馏分一二段加氢催化剂均比参比剂具有更好的加氢活性、选择性及稳定性,其整体性能超过了参比剂;C9馏分一段加氢产品可用于调合成品汽油,其调合比例可达10%,C9馏分二段加氢产品可经分离可生产高芳烃溶剂油。  相似文献   

16.
制备了漆原镍U-Ni-A(S)催化剂,用于间硝基甲苯常压下催化加氢制备间甲苯胺,考察了加氢条件对间硝基甲苯转化率的影响。结果表明,在展开剂为醋酸、m(锌粉):m(NiCl_2·6H_2O)=3:2时,制得的漆原镍催化剂具有良好的催化活性;在m(漆原镍):m(反应物)=5:3,以甲醇作溶剂,反应时间1.5 h,氢气流速15 mL/min条件下,间硝基甲苯转化率达100%。催化剂具有良好的稳定性,循环使用10次催化活性不变。新鲜催化剂可能放置7 d。  相似文献   

17.
纳米SiO_2负载12-钨磷酸催化双环戊二烯环氧化   总被引:1,自引:1,他引:0  
李丽  李刚  彭军  张龙 《石油化工》2006,35(12):1130-1133
采用浸渍法制备了具有Keggin结构的纳米SiO2负载12-钨磷酸(H3PW12O40/SiO2)催化剂,利用傅里叶变换红外光谱、微孔测量仪对H3PW12O40/SiO2催化剂的结构进行了表征。以H3PW12O40/SiO2为催化剂、H2O2为氧源,催化双环戊二烯环氧化,制备了二氧化双环戊二烯。考察了催化剂用量、反应温度、反应时间、溶剂及H2O2溶液的含量对环氧化反应的影响。确定了适宜的环氧化反应条件:三氯甲烷溶剂15mL,0.05mol双环戊二烯,0.75gH3PW12O40/SiO2(H3PW12O40质量分数30%)催化剂,质量分数为30%的H2O2溶液12.5mL,反应温度65℃,反应时间16h。在此条件下,双环戊二烯的转化率为99.85%,二氧化双环戊二烯的选择性为99.86%,H2O2利用率为99.18%。合成的产物经色谱-质谱分析为目标产物二氧化双环戊二烯。  相似文献   

18.
用三种CO含量不同的原料气对Cu/Zn/Al/Zr四组份催化剂进行CO2加氢合成甲醇的研究。结果表明,原料气中掺入的CO能提高CO2加氢合成甲醇的选择性和收率。TPSR-MS谱说明预吸附的CO能抑制CO2加氢的逆水汽变换反应,而有利于转化为甲醇。  相似文献   

19.
分别以H2O,H3BO3,C6H8O7,NH3.H2O为溶剂,采用离子交换法制备了铜水泥催化剂,并在固定床上考察了催化剂催化甲醇裂解的性能。实验结果表明,以H2O代替NH3.H2O制得的铜水泥催化剂性能优越,实现了催化剂制备的环保高效。与商用的CuZnAl甲醇裂解催化剂相比,铜水泥催化剂具有较高催化活性和选择性,在常压、300℃、重时空速3.39h-1的条件下,铜水泥催化剂的比活性(甲醇转化率与铜负载量的比值)和CO+H2的选择性分别为2.44和95.9%,CuZnAl催化剂分别为0.64和89.2%;铜水泥催化剂的抗压强度大于45N,而CuZnAl催化剂的抗压强度为20N。铜水泥催化剂具有机械强度高、活性高、CO+H2选择性高的特点,基本满足了随车制氢的要求。XRD,SEM,DTG-DTA,FTIR,H2-TPR表征结果显示,铜水泥催化剂制备过程中形成的CaCO3具有稳定铜物种的作用,有助于保持催化剂的高温活性。  相似文献   

20.
以废弃的流化催化裂化催化剂(简称SFCC)为载体、β-环糊精为金属络合剂、硝酸镍为镍源,采用湿法浸渍法制备β-环糊精修饰的Ni/SFCC催化剂(简称Ni/SFCC-CD催化剂),考察其对C9石油树脂的催化加氢性能。通过BET比表面积测试、H2程序升温还原、X射线光电子能谱等手段对催化剂的物相结构进行表征,研究β-环糊精的作用机理及其对催化剂加氢性能的影响。研究结果表明:在反应温度为260 ℃、反应压力为7 MPa、反应时间为2.0 h的最优条件下,采用Ni/SFCC-CD催化C9石油树脂加氢,可制得溴值为1.45 gBr/(100 g)、色号(加纳德)小于1的水白色氢化C9石油树脂,催化剂循环使用4次后仍保持良好活性;β-环糊精的作用机理是:β-环糊精与硝酸镍产生络合作用,抑制硝酸镍的分解、控制NiO的结晶过程和增强活性组分Ni与载体之间的相互作用力,从而提高了Ni/SFCC-CD的催化活性和稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号