首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用普通凝固技术制备了含有长周期堆垛有序 (long period stacking ordered, LPSO) 结构相的Mg92Zn4Y4和Mg92Zn4Y3Gd1合金。通过OM、SEM、EDS、XRD和TEM分析了合金中各相形貌、微区成分及结构。结果表明:Zn/RE原子比为1的2种铸态镁合金中均存在14H-LPSO结构相;在Mg-Zn-Y合金中添加稀土元素Gd增加了合金的形核质点并促进了长周期堆垛有序结构相的形成,14H-LPSO相体积分数由12.1%增至30.4%;LPSO结构相在高温形成时分割了a-Mg树枝晶,基体平均晶粒尺寸由50 μm降至10 μm以下;铸态Mg92Zn4Y4合金的凝固组织为a-Mg固溶体+Mg12ZnY+Mg3Zn3Y2+Mg-Y;铸态Mg92Zn4Y3Gd1合金的凝固组织主要为a-Mg固溶体+Mg12Zn(Y,Gd)+Mg3Zn3(Y,Gd)2;室温条件下,Mg92Zn4Y4和Mg92Zn4Y3Gd1合金的压缩率达到12.4%和15.5%,热导率分别为99.233和88.639 W·(m·K)-1。  相似文献   

2.
采用SEM和TEM等分析方法研究包含长周期堆垛有序结构的挤压态Mg94Zn2Y4合金的显微组织和力学性能。结果表明:铸态Mg94Zn2Y4合金由18R-LPSO和α-Mg两相组成。挤压后,长周期相分层,并形成宽度为50~200 nm的α-Mg 薄片。合金经498 K时效处理36 h后达到时效峰值,在其组织中析出β′相,该析出相的出现显著提高了α-Mg基体的显微硬度,从HV108.9增加到HV129.7;而LPSO结构的显微硬度稳定在HV145左右。TEM分析及其电子衍射花样表明,β′相与α-Mg和LPSO结构具有独特的位相关系,其原子最密排面的堆垛方向垂直于α-Mg和LPSO相最密排面的堆垛方向。由于β′相和18R-LPSO相的共同存在,处于时效峰值态的Mg94Zn2Y4合金的抗拉强度达到410.7 MPa。  相似文献   

3.
研究Zn添加对Mg-10Gd-3Y-0.6Zr(wt.%)合金在铸态、固溶态和峰时效态下显微组织和力学性能的影响。实验结果表明,不含Zn的铸态合金由α-Mg和Mg_(24)(Gd,Y)_5相组成,而含0.5wt.%Zn的铸态合金由α-Mg、(Mg,Zn)_3(Gd,Y)和Mg_(24)(Gd,Y,Zn)_5相组成。随着Zn含量增加到1 wt.%,Mg_(24)(Gd,Y,Zn)_5相消失,一些针状堆垛层错沿晶界分布。此外,在含2wt.%Zn的铸态合金中观察到18R型长周期结构相。固溶处理后,Mg_(24)(Gd,Y)_5和Mg_(24)(Gd,Y,Zn)_5共晶相完全溶解,(Mg,Zn)_3(Gd,Y)相、针状堆垛层错和18R型长周期结构相均转化为14H型长周期结构相。适当体积分数的14H型长周期结构相和细小的椭球状β′相共同赋予峰时效态下含0.5 wt.%Zn合金优良的综合力学性能,该合金的抗拉强度、屈服强度和伸长率分别为338 MPa、201 MPa和6.8%。  相似文献   

4.
研究了在773 K、48 h条件下热处理对Mg_(94)Zn_2Y_4合金的微观组织与力学性能的影响。结果表明,块形和板条结构的18R长周期堆垛结构相可直接从熔体凝固过程中形成。热处理后,绝大多数的块形和板条结构相转变为细片状或针状的14H相。在热处理过程中,有相当体积分数的LPSO(长周期堆垛结构)相由18R转变为14H。结果表明,经过热处理,块形和板条结构相与针状相可以在α-Mg基体中共存,并作为影响因素,使合金晶粒得到细化,晶粒尺寸为14~24μm(平均晶粒尺寸为19μm),使极限抗拉强度、屈服强度以及伸长率分别由铸态时的182 MPa、135 MPa和10.2%提高至245 MPa、157 MPa和13.8%。  相似文献   

5.
采用常规凝固技术在Mg_(94)Zn_3Y_xGd_(3-x)(x=3,2,1.5,1,摩尔分数)镁合金中获得具有长周期堆垛有序(LPSO)结构相,并对合金凝固组织、耐腐蚀性能和压缩力学性能进行系统研究。结果表明:n(Zn)/n(Y+Gd)=1:1的Mg_(94)Zn_3Y_xGd_(3-x)合金凝固组织含有α(Mg)相、Mg_3Zn_3R_E2(W)相、14H-LPSO相和少量颗粒状面心立方结构的Mg-Y-Gd相。Gd含量显著影响合金中LPSO相的形成和分布。随着Gd含量增加,合金中14H-LPSO相体积分数先增加后减少。结合电化学阻抗谱分析,LPSO增强Mg-Zn-Y-(Gd)镁合金在3.5%NaCl溶液中的电化学腐蚀等效电路为R(Q(R(QR)))。4种合金的腐蚀电流密度在10_(-5)A/cm2数量级。当x(Gd)≤1%时,Mg-Zn-Y-(Gd)合金表现出良好的耐蚀性,并优于工业用AZ91D镁合金。而当x(Gd)≥1.5%时,合金的耐腐蚀能力下降。在室温条件下,随着14H-LPSO相体积分数增加,Mg-Zn-Y-(Gd)合金的压缩力学性能显著提高。此外,适量W相和弥散分布块状Mg-Y-Gd相的钉扎作用有利于提高合金的力学性能。  相似文献   

6.
采用差热分析(DSC)、X射线衍射(XRD)、光学金相显微镜(OM)、扫描电子显微镜(SEM)和能谱分析(EDS)研究了均匀化温度与时间对GW92铸态合金显微组织和力学性能的影响,确定了该合金最佳的均匀化工艺。结果表明:GW92铸态合金的显微组织由α-Mg基体、Mg5(Gd,Y)相、Mg5(Gd,Y,Zn)相、Mg12Zn(Gd,Y)相和富稀土相组成;均匀化后,GW92镁合金主要由α-Mg基体、Mg12Zn(Gd,Y)相共存。该合金最佳的均匀化工艺为510℃×18 h,合金抗拉强度为247.2 MPa,伸长率为6.1%。  相似文献   

7.
采用OM、SEM、TEM和电子万能试验机研究了Mg_(94)Y_4Zn_1Ni_1(at%)合金在铸态、退火、挤压和时效态的显微组织与力学性能。结果表明:铸态合金组织由胞状α-Mg相、网状18R LPSO相和块状Mg_(24)(Y,Zn,Ni)_5相组成。退火后,合金中未析出14H LPSO相。经挤压变形,18R LPSO相转变为长条状并沿挤压方向排列,挤压态合金的抗拉强度达到417 MPa,显著高于铸态和退火态合金。经过T5和T6时效处理,在合金的基体中析出大量细小的共格β'沉淀相,合金得到进一步强化。T5态和T6态合金的抗拉强度分别为434和432 MPa,屈服强度均高于300 MPa。  相似文献   

8.
Mg-(11-13)Gd-1Zn变形镁合金的组织和力学性能   总被引:1,自引:0,他引:1  
制备了3种成分的Mg-Gd-Zn三元合金,并对其显微组织和力学性能进行了较系统的研究.结果表明,Mg-(11-13)Gd-1Zn(质量分数,%)三元合金的铸态组织由α-Mg,(Mg,Zn)3Gd和具有14H结构的长周期堆垛有序相(14H-LPSO)组成;(Mg,Zn)3Gd呈现典型的网状共晶形貌,其体积分数随Gd含量的增加而增大.热挤压过程中(Mg,Zn)3Gd相破碎,其颗粒沿挤压方向排列,而14H-LPSO相则分布于条状分布的(Mg,Zn)3Gd颗粒之间.铸态和挤压态合金在高温固溶处理后,14H-LPSO相的体积分数增加,大部分(Mg,Zn)3Gd相溶入基体.挤压态合金经固溶和时效(T6)处理后,显微组织中14H-LPSO相的体积分数大幅度增加,而且出现了β′和β1沉淀颗粒.对挤压后的合金直接进行时效处理(T5)过程中也形成了β′和β1沉淀,但14H-LPSO相没有显著增加.3种合金中Mg-11Gd-1Zn合金在T6态的性能最好,抗拉强度高达416 MPa.  相似文献   

9.
研究了Mg-6Gd-4Y(wt.%)合金与添加1%Zn的Mg-6Gd-4Y-1Zn合金的显微组织与力学性能。结果表明:Mg-6Gd-4Y合金的铸态组织由?-Mg基体和Mg24(GdY)5两相组成。而含有Zn的Mg-6Gd-4Y-1Zn合金的铸态组织则主要由α-Mg,Mg24(GdY)5和具有18R-LPSO结构的Mg12Y1Zn1相组成。挤压后,在含锌合金中发现了14H-LPSO相,分布于条状分布的Mg12Y1Zn1之间。14H-LPSO相的形成机理为沉淀析出,反应可表示为α-Mg′→α-Mg + 14H。Zn含量对β系列沉淀物没有明显的影响。在Mg-6Gd-4Y合金和Mg-6Gd-4Y-1Zn合金上进行的时效(T6和T5)处理均引起β"析出相的形成。T6处理后的Mg-6Gd-4Y-1Zn合金具有高拉伸强度和良好的延展性,屈服强度(YS),抗拉强度(UTS)和延伸率分别为309MPa,438MPa和6.8%。这是18R-LPSO相与细小弥散分布的14H-LPSO相和β"沉淀相共同作用的结果。  相似文献   

10.
利用传统的熔铸法制备Mg-14.28Gd-2.44Zn-0.54Zr合金,研究铸态和固溶态合金的微结构。利用销-盘装置研究铸态和固溶态合金的室温润滑滑动摩擦磨损行为研究。在外载荷为40 N,滑动速度为30-300 mm/s以及滑行路程为5000 m情况下,测量磨损率和摩擦因数。研究结果表明:铸态合金主要由α-Mg固溶体、分布在基体内的层片状的14H型长周期结构(LPSO)和β-[(Mg,Zn)3Gd]相组成。经过温度为773 K固溶处理35 h后,大量的β相转变成具有14H型X相LPSO结构。由于固溶处理后大量β相转变为热稳定的韧性X-Mg12Gd Zn长周期结构相,固溶合金呈现较低的抗磨损能力。  相似文献   

11.
采用传统重力铸造制备Mg-Ni-Y合金并研究了Ni含量对合金显微组织和力学性能的影响。结果表明,Mg-0.5Ni-3.5Y合金组织由α-Mg和Mg24Y5两相组成;Mg-1.2Ni-3.5Y合金中Mg24Y5相消失,形成了层片状长周期堆垛有序(LPSO)相;Mg-1.9Ni-3.5Y和Mg-3.5Ni-3.5Y合金中除含有α-Mg和LPSO相外,在晶界处还存在共晶组织。LPSO相可以提高合金的强度,具有大量细小致密层片状LPSO相的Mg-1.2Ni-3.5Y合金综合力学性能最优,铸态抗拉强度及伸长率可分别达到210 MPa和8.8%。  相似文献   

12.
在Mg-Y-Zn系长周期镁合金中加入微量Mo,探究其微合金化对基体合金组织及力学性能的影响。结果表明,铸态Mg-Zn-Y-Mn-(Mo)合金显微组织由α-Mg基体相、18R LPSO相(Mg_(12)YZn)和W相(Mg_3Zn_3Y_2)三相组成。发现微量Mo能明显细化铸态合金晶粒,显著促进合金中18R LPSO相形成,抑制W相析出。当加入0.3 wt.%Mo时,合金的显微组织和力学性能达到最佳,最小晶粒尺寸达到22μm,其抗拉强度和伸长率分别达到265 MPa和13.5%。  相似文献   

13.
《铸造》2019,(6)
采用超声振动制备Mg98.5Ni0.5Y1.0合金半固态浆料,随后将浆料直接挤压铸造成形,研究了挤压压力对合金组织和性能的影响。结果表明,挤压铸造能显著细化半固态Mg98.5Ni0.5Y1.0合金中的初生α-Mg相和长周期堆垛有序(LPSO)结构。挤压铸造压力能提高Y和Ni元素在镁基体中的固溶度,促使Mg2Ni颗粒在LPSO结构中析出。随着挤压铸造压力的升高,合金的晶粒尺寸降低,强度不断提高,100 MPa时合金具有最佳的综合性能,其抗拉强度、屈服强度以及伸长率分别为240 MPa、113 MPa和13.12%,与未施加压力的合金相比,分别提高了7.6%、19.56%和12.7%。  相似文献   

14.
研究了Mg-Gd-Y-Zn-Zr合金中长周期堆垛有序结构(LPSO)对镁合金组织性能的影响。对铸态Mg-6Gd-2xYxZn-0.6Zr(质量分数,%)合金(x值取1、1.5、2、2.5,Y/Zn的质量比为2)进行X射线衍射分析、扫描电镜观察和能谱分析,拉伸试验和阻尼测试。结果表明,随着Y、Zn含量的增加,合金中镁基体减少、第二相增多,合金铸态相组成为Mg基体和Mg10(Gd,Y)Zn相。另外,组织得到细化,抗拉强度明显增加,塑性也有所提高,断裂机理由脆性解理断裂转变为准解理断裂。含有LPSO结构的镁合金的阻尼性能变化不能用单一的G-L理论解释。  相似文献   

15.
利用XRD、OM、SEM、TEM和室温拉伸实验等方法研究了均匀化热处理对Mg-5Gd-3Y-1Nd-2Zn-0.5Zr(mass%)合金组织及力学性能的影响。结果表明:铸态组织主要由等轴的α-Mg基体、晶界上的(Mg,Zn)3RE相、14H型LPSO结构相及靠近晶界处α-Mg基体中的堆垛层错组成;均匀化热处理后,(Mg,Zn)3RE相和堆垛层错都消失了,在晶界上出现了网状形貌的14H型LPSO结构相。室温拉伸实验表明:铸态合金的抗拉强度,屈服强度和伸长率分别为170 MPa,120 MPa和2.0%;经过520℃均匀化热处理32 h后,合金的抗拉强度,屈服强度和伸长率分别为240 MPa,158 MPa和10.0%。  相似文献   

16.
在保持Zn/Y原子比(1:2)一定的条件下,利用普通铸造法制备了Mg97ZnY2、Mg97.75Zn0.75Y1.5、Mg98.5Zn0.5Y1和Mg99.25Zn0.25Y0.5四种合金,研究了合金元素加入量对该合金系铸态组织和性能的影响。合金元素添加量不会改变合金的物相组成,均主要由α-Mg和Mg12ZnY(LPSO)两相组成。但随合金元素含量降低合金相形态逐渐从网状向孤立颗粒状转变。Mg97.75Zn0.75Y1.5合金的力学性能最佳,与Mg97ZnY2合金相比其抗拉强度和断裂应变分别提高25%和85%。进一步降低合金元素添加量,合金的力学性能降低,断口形貌由韧窝、解理面相结合变为典型的脆断特征。  相似文献   

17.
Y/Zn摩尔比对Mg-Zn-Zr-Y合金相组成的影响(英文)   总被引:3,自引:0,他引:3  
采用XRD和SEM/EDS等分析方法研究铸态和退火态富镁Mg-Zn-Zr-Y合金中相组成随着Y/Zn摩尔比的变化而演变的规律,并从相图计算的角度解释这种演变规律。结果表明:Mg-Zn-Zr-Y合金中第二相的形成严格依赖于Y/Zn摩尔比,X相(Mg12YZn)、W相(Mg3Y2Zn3)和I相(Mg3YZn6)随着Y/Zn摩尔比的降低依次析出。与相组成对应的摩尔比或摩尔比范围定量描述如下:当Y/Zn摩尔比约为0.164时,相组成为α-Mg+I;当Y/Zn摩尔比为0.164~0.33时,相组成为α-Mg+I+W;当Y/Zn摩尔比约为0.33时,相组成为α-Mg+W;当Y/Zn摩尔比为0.33~1.32时,相组成为α-Mg+W+X;当Y/Zn摩尔比约为1.32时,相组成为α-Mg+X。该研究为Mg-Zn-Zr-Y合金设计和合金选用提供了指导。  相似文献   

18.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱分析仪以及拉伸试验机,研究了不同热处理对Mg-9Gd-4Y-1Zn-0.5Zr合金组织和性能的影响。结果表明:不论是铸态、固溶态,还是时效态,合金组织都主要由α-Mg基体以及稀土化合物Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12Zn(Gd,Y)组成;但铸态下合金中第二相主要为Mg5(Gd,Y,Zn),在晶内呈平行的流线状排列,晶粒粗大。通过固溶时效处理,Mg12Zn(Gd,Y)相在晶界处析出并向晶内生长,成为合金的主要强化相,其强化方式主要为固溶强化和时效强化。室温下,铸态合金抗拉强度为138 MPa,伸长率为2.16%,时效态合金抗拉强度为223 MPa,伸长率为3.94%,合金力学性能得到明显提升。  相似文献   

19.
采用X射线衍射仪、光学显微镜、扫描电镜、能谱分析仪以及拉伸试验机,研究了不同热处理对Mg-9Gd-4Y-1Zn-0.5Zr合金组织和性能的影响。结果表明:不论是铸态、固溶态,还是时效态,合金组织都主要由α-Mg基体以及稀土化合物Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12Zn(Gd,Y)组成;但铸态下合金中第二相主要为Mg5(Gd,Y,Zn),在晶内呈平行的流线状排列,晶粒粗大。通过固溶时效处理,Mg12Zn(Gd,Y)相在晶界处析出并向晶内生长,成为合金的主要强化相,其强化方式主要为固溶强化和时效强化。室温下,铸态合金抗拉强度为138 MPa,伸长率为2.16%,时效态合金抗拉强度为223 MPa,伸长率为3.94%,合金力学性能得到明显提升。  相似文献   

20.
采用X射线衍射、扫描电子显微镜、透射电子显微镜和室温拉伸等方法,研究了总压下量分别为25%和50%的热轧Mg_(97)Zn_1Y_2(at%)合金板显微组织以及力学性能。结果表明:轧制过程中,具有14H长周期堆垛结构(LPSO)的Mg_(12)Zn Y相发生了扭折变形。随着轧制变形量的增大,LPSO相扭折变形程度增大。同时,轧制变形量较大的合金板材具有较强的基面织构,较高的抗拉强度和较好的塑性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号