首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
《Organic Electronics》2008,9(6):1087-1092
Poly(vinylidene fluoride-trifluoroethylene) (70–30 mol%) was used as the functional dielectric layer in organic ferroelectric field effect transistors (FeFET) for non-volatile memory applications. Thin P(VDF-TrFE) film samples spin-coated on metallized plastic substrates were stretch-annealed to attain a topographically flat-grain structure and greatly reduce the surface roughness and current leakage of semi-crystalline copolymer film, while enhancing the preferred β-phase of the ferroelectric films. Resultant ferroelectric properties (PR = |10| μC/cm2, EC = |50| MV/m) for samples simultaneously stretched (50–70% strain) and heated below the Curie transition (70 oC) were comparable to those resulting from high temperature annealing (>140 oC). The observed enhancements by heating and stretching were studied by vibration spectroscopy and showed mutual complementary effects of both processes. Organic FeFET fabricated by thermal evaporating pentacene on the smooth P(VDF-TrFE) films showed substantial improvement of semiconductor grain growth and enhanced electrical characteristics with promising non-volatile memory functionality.  相似文献   

2.
《Organic Electronics》2008,9(1):51-62
Surface energy of indium tin oxide (ITO) surfaces treated by different plasmas, including argon (Ar–P), hydrogen (H2–P), carbon tetrafluoride (CF4–P), and oxygen (O2–P), was measured and analyzed. The initial growth mode of hole transport layers (HTLs) was investigated by atomic force microscope observation of thermally deposited 2 nm thick N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) on the plasma treated ITO surfaces. The results show that different plasma treatments of ITO influence the growth of HTLs in significantly different ways through the modification of surface energy, especially the polar component. The O2–P and CF4–P were found to be most effective in enhancing surface polarity through decontamination and increased dipoles, leading to more uniform and denser nucleation of NPB on the treated ITO surfaces. It was further found that increased density of nucleation sites resulted in a decreased driving voltage of OLEDs. Under the same fabricating conditions, a lowest driving voltage of 4.1 V was measured at a luminance of 200 cd/m2 for the samples treated in CF4–P, followed by the samples treated in O2–P (5.6 V), Ar–P (6.4 V), as-clean (7.0 V) and H2–P (7.2 V) plasma, respectively. The mechanisms behind the improved performance were proposed and discussed.  相似文献   

3.
《Organic Electronics》2014,15(1):35-39
The temperature dependence of poly(3-hexylthiophene-2,5-diyl) (P3HT)/polystyrene (PS) blend organic transistor current/voltage (IV) characteristics has been experimentally and theoretically studied. The planar transistors, realized by drop casting the P3HT/PS ink, exhibit high mobilities (over 5 × 10−3 cm2 V−1 s−1) and good overall characteristics. A transistor model accounting for transport mechanisms in disordered organic materials was used to fit the measured characteristics. Using a single set of parameters, the measured effective mobility versus gate bias, either increasing or decreasing with the gate bias depending on temperature, is well reproduced over a wide temperature range (130–343 K). A Gaussian density of states width of 0.045 eV was determined for this P3HT/PS blend. The transistor IV characteristics are very well described considering disordered material properties within a self-consistent transistor model.  相似文献   

4.
The charge transport properties in a novel electroluminescent poly{[2-(4′,5′-bis(3″-methylbutoxy)-2′-p-methoxy-phenyl)phenyl-1,4-phenylene vinylene]-co-(9,9-dioctyl-2,7-fluorenylene vinylene)} (BPPPV-PF) have been studied using a time-of-flight (TOF) photoconductivity technique. The TOF transients for holes were recorded over a range of temperatures (207–300 K) and electric fields (1.5 × 105–6.1 × 105 V/cm). The hole transport in this polymer was weakly dispersive in nature with a mobility at 300 K of 5 × 10−5 cm2/V s at 2.5 × 105 V/cm. This increased to 8.4 × 10−5 cm2/V s at 6.1 × 105 V/cm. The temperature and field dependence of charge mobility has been analyzed using the disorder formalisms (Bässler’s Gaussian disorder model (GDM) and correlated disorder model (CDM)). The fit with Gaussian disorder (GDM) model yielded the mobility pre-factor μ = 1.2 × 10−3 cm2/V s, energetic disorder parameter σ = 82 meV and positional disorder parameter Σ = 1.73. The average inter-site separation (a = 7 Å) and the charge localization length (L = 3.6 Å) was estimated by assuming the CDM type charge transport. The microscopic charge transport parameters derived for this polymer are almost identical to the reported values for fully conjugated polymers with high chemical purity. The results presented indicate that the charge transport parameters can be controlled and optimized for organic optoelectronic applications.  相似文献   

5.
《Solid-state electronics》2006,50(9-10):1515-1521
Al0.26Ga0.74N/AlN/GaN high-electron-mobility transistor (HEMT) structures with AlN interfacial layers of various thicknesses were grown on 100-mm-diameter sapphire substrates by metalorganic vapor phase epitaxy, and their structural and electrical properties were characterized. A sample with an optimum AlN layer thickness of 1.0 nm showed a highly enhanced Hall mobility (μHall) of 1770 cm2/Vs with a low sheet resistance (ρs) of 365 Ω/sq. (2DEG density ns = 1.0 × 1013/cm2) at room temperature compared with those of a sample without the AlN interfacial layer (μHall = 1287 cm2/Vs, ρs = 539 Ω/sq., and ns = 0.9 × 1013/cm2). Electron transport properties in AlGaN/AlN/GaN structures were theoretically studied, and the calculated results indicated that the insertion of an AlN layer into the AlGaN/GaN heterointerface can significantly enhance the 2DEG mobility due to the reduction of alloy disorder scattering. HEMTs were successfully fabricated and characterized. It was confirmed that AlGaN/AlN/GaN HEMTs with the optimum AlN layer thickness show superior DC properties compared with conventional AlGaN/GaN HEMTs.  相似文献   

6.
The electronic properties, morphology and optoelectronic device characteristics of conjugated diblock copolythiophene, poly(3-hexylthiophene)-block -poly(3-phenoxymethylthiophene) (P3HT-b-P3PT), are firstly reported. The polymer properties and structures were explored through different solvent mixtures of chloroform (CHCl3), dichlorobenzene (DCB), and CHCl3:DCB (1:1 ratio). The absorption maximum (λmax) of P3HT-b-P3PT prepared from DCB was around 554 nm with a shoulder peak indicative for the highly crystalline structure around 604 nm while that from CHCl3 was 516 nm without the clear shoulder peak. The field-effect hole mobility of P3HT-b-P3PT increased from ~6.0 × 10?3, ~8.0 × 10?3 to ~2.0 × 10?2 cm2 V?1 s?1 as the DCB content in the solvent mixture enhanced. The AFM images suggested that the highly volatile CHCl3 processing solvent led to the amorphous structure, on the other hand, less volatile DCB resulted in the largely crystalline structure of the P3HT-b-P3PT. Such difference on the polymer structure and hole mobility led to the varied power conversion efficiency (PCE) of the photovoltaic cells fabricated from the blend of P3HT-b-P3PT/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) (1:1, w/w): 1.88 (CHCl3), 2.13 (CHCl3:DCB (1:1)), and 2.60% (DCB). The PCBM blend ratio also significantly affected the surface structure and the solar cell performance. The PCE of polymer/PCBM could be improved to 2.80% while the ratio of polymer to PCBM went to 1:0.7. The present study suggested that the surface structures and optoelectronic device characteristics of conjugated diblock copolymers could be easily manipulated by the processing solvent, the block segment characteristic, and blend composition.  相似文献   

7.
8.
Dry method for monolayer deposition of n-octylphosphonic acid (C8PA) on the surface of aluminium oxide (AlOx) is presented. Vacuum thermal evaporation is employed to deposit initial thickness corresponding to several C8PA monolayers, followed by a thermal desorption of the physisorbed C8PA molecules. AlOx functionalized with such C8PA monolayer exhibits leakage current density of ~10?7 A/cm2 at 3 V, electric breakdown field of ~6 MV/cm, and a root-mean-square surface roughness of 0.36 nm. The performance of low-voltage pentacene thin-film transistors that implement this dry AlOx/C8PA gate dielectric depends on C8PA desorption time. When the desorption time rises from 25 to 210 min, the field-effect mobility increases from ~0.02 to ~0.04 cm2/V s, threshold voltage rises from ~?1.2 to ~?1.4 V, sub-threshold slope decreases from ~120 to ~80 mV/decade, off-current decreases from ~5 × 10?12 to ~1 × 10?12 A, on/off current ratio rises from ~3.8 × 104 to ~2.5 × 105, and the transistor hysteresis decreases from 61 to 26 mV. These results collectively support a two stage model of the desorption process where the removal of the physisorbed C8PA molecules is followed by the annealing of the defect sites in the remaining C8PA monolayer.  相似文献   

9.
Phosphorus-doped n-type Ge layers were grown on p-type Si (100) wafers (8 in. in diameter, resistivity 5–15 Ω cm) using rapid thermal chemical vapor deposition (RTCVD). The surface morphology was very smooth, with a root mean square (RMS) surface roughness of 0.29 nm. The in-plane lattice constant calculated from high-resolution X-ray diffraction (HR-XRD) data was 0.5664 nm, corresponding to in-plane tensile strain of ~0.47%. The Raman Ge peak for each location indicates tensile strain from the Ge wafer. We estimated the in-plane strain as tensile strain of ~0.45%, in excellent agreement with the XRD analysis. Initial photocurrent spectrum experiments on the sample confirm valence band splitting of the direct gap induced by tensile strain. The temperature dependence of the direct bandgap energy EΓ1 of Ge can be described by the empirical Varshni expression EΓ1(T)=0.864–5.49×10–4T 2/(T+296).  相似文献   

10.
《Organic Electronics》2014,15(8):1799-1804
Copper phthalocyanine (CuPc)-based thin film transistors were fabricated using CuPc films grown under different deposition pressure (Pdep) (ranging from 1.8 × 10−4 Pa to 1.0 × 10−1 Pa). The transistor performance highly depended on Pdep. A field-effect mobility of 2.1 × 10−2 cm2/(V s) was achieved under 1.0 × 10−1 Pa. Detailed investigations revealed that Pdep modulates the molecular packing and orientation of the organic films grown on a SiO2/Si substrate and influences the charge transport. Furthermore, from a device physics point of view, contact resistance of the fabricated transistors decreased when Pdep increased, which was beneficial in reducing energy consumption.  相似文献   

11.
We present a combined charge transport and X-ray diffraction study of blends based on regioregular poly(3-hexylthiophene) (P3HT) and the polyfluorene co-polymer poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2′,2′′-diyl) (F8TBT) that are used in efficient all-polymer solar cells. Hole mobility is observed to increase by nearly two orders of magnitude from less than 10?7 cm2 V?1 s?1 for as spin-coated blends to 6 × 10?6 cm2 V?1 s?1 for blends annealed at 453 K at a field of 2.7 × 105 V/cm, but still significantly below the time-of-flight mobility of unblended P3HT of 1.7 × 10?4 cm2 V?1 s?1. The hole mobility of the blends also show a strong negative electric-field dependence, compared with a relatively flat electric-field dependence of unblended P3HT, suggestive of increased spatial disorder in the blends. X-ray diffraction measurements reveal that P3HT/F8TBT blends show a phase separation of the two components with a crystalline part attributed to P3HT and an amorphous part attributed to F8TBT. In as-spun and mildly annealed blends, the measured d-values and relative intensities of the 100, 200 and 300 P3HT peaks are noticeably different to unblended P3HT indicating an incorporation of F8TBT in P3HT crystallites that distorts the crystal structure. At higher anneal temperatures the blend d-values approach that of unblended P3HT suggesting a well separated blend with pure P3HT crystallites. P3HT crystallite size in the blend is also observed to increase with annealing from 3.3 to 6.1 nm, however similar changes in crystallite size are observed in unblended P3HT films with annealing. The lower mobility of P3HT/F8TBT blends is attributed not only to increased P3HT structural disorder in the blend, but also due to the blend morphology (increased spatial disorder). Changes in hole mobility with annealing are interpreted in terms of the need to form percolation networks of P3HT crystallites within an F8TBT matrix, with a possible contribution due to the intercalation of F8TBT in P3HT crystallites acting as defects in the as-prepared state.  相似文献   

12.
Donor–acceptor (D–A) type conjugated polymers have been developed to absorb longer wavelength light in polymer solar cells (PSCs) and to achieve a high charge carrier mobility in organic field-effect transistors (OFETs). PDTDP, containing dithienothiophene (DTT) as the electron donor and diketopyrrolopyrrole (DPP) as the electron acceptor, was synthesized by stille polycondensation in order to achieve the advantages of D–A type conjugated polymers. The polymer showed optical band gaps of 1.44 and 1.42 eV in solution and in film, respectively, and a HOMO level of 5.09 eV. PDTDP and PC71BM blends with 1,8-diiodooctane (DIO) exhibited improved performance in PSCs with a power conversion efficiency (PCE) of 4.45% under AM 1.5G irradiation. By investigating transmission electron microscopy (TEM), atomic force microscopy (AFM), and the light intensity dependence of JSC and VOC, we conclude that DIO acts as a processing additive that helps to form a nanoscale phase separation between donor and acceptor, resulting in an enhancement of μh and μe, which affects the JSC, EQE, and PCE of PSCs. The charge carrier mobilities of PDTDP in OFETs were also investigated at various annealing temperatures and the polymer exhibited the highest hole and electron mobilities of 2.53 cm2 V−1 s−1 at 250 °C and 0.36 cm2 V−1 s−1 at 310 °C, respectively. XRD and AFM results demonstrated that the thermal annealing temperature had a critical effect on the changes in the crystallinity and morphology of the polymer. The low-voltage device was fabricated using high-k dielectric, P(VDF-TrFE) and P(VDF-TrFE-CTFE), and the carrier mobility of PDTDP was reached 0.1 cm2 V−1 s−1 at Vd = −5 V. PDTDP complementary inverters were fabricated, and the high ambipolar characteristics of the polymer resulted in an output voltage gain of more than 25.  相似文献   

13.
The main goal of the paper was investigation of influence of aluminum electrode preparation via thermal evaporation (TE) and the magnetron sputtering (MS) on power conversion efficiency (PCE) of polymeric solar cells. The photovoltaic properties of such three kinds devices based on poly(3-hexylthiophene-2,5-diyl) (P3HT) as ITO/P3HT/Al, ITO/P3HT:PCBM (1:1, w/w)/Al and ITO/PEDOT:PSS/P3HT:PCBM (1:1, w/w)/Al were investigated. For the constructed devices impedance spectroscopy were analyzed. For devices lack of PEDOT:PSS layer or lack of PCBM, photovoltaic parameters were very low and similar to the parameters obtained for device with Al electrode prepared by magnetron sputtering. The devices comprising PEDOT:PSS with P3HT:PCBM showed the best photovoltaic parameters such as a VOC of 0.60 V, JSC of 4.61 mA/cm2, FF of 0.21, and PCE of 5.7 × 10?1%.  相似文献   

14.
We studied the electrical properties of organic photovoltaic (OPV) devices based on poly (3-hexylthiophene) and fullerene derivative [6, 6]-Phenyl-C70-butyric acid methyl ester nanocomposite (P3HT:PC70BM) as a function of the annealing temperature. Thermal annealing enables crystallization of the polymer and diffusion of the PC70BM molecules. Diode parameters, such as the barrier height ϕb and the ideality factor n were calculated. They were found to be depend strongly on the annealing temperature. This dependence is attributed to surface states, inhomogeneity in the material and series resistance. Best OPV devices had a short circuit current density of 3.35 mA/cm2, an open circuit voltage of 0.68 V, a fill factor of 0.45, and a power conversion efficiency of 2.2%, by applying a thermal annealing temperature of 150 °C for 10 min.  相似文献   

15.
《Organic Electronics》2008,9(5):925-929
We have successfully demonstrated a polymeric semiconductor-based transistor with low-k polymer/high-k metal-oxide (TiO2) bilayer as gate dielectric. The TiO2 layers are readily processable from solution and cured at low temperature, instead of traditionally sputtering or high temperature sintering process, thus may suitable for a low-cost organic field effect transistors (FETs) manufacture. The low-k polymer capped on TiO2 layer could further smooth the TiO2 dielectric surface and suppress the leakage current from grain boundary of TiO2 films. The resulting unpatented P3HT-OFETs could operate with supply voltage less than 10 V and the mobility and threshold voltage were 0.0140 cm2/V s and 1.14 V, respectively. The on/off ratio was 1.0 × 103.  相似文献   

16.
We have fabricated Au/n-Si and Au/PVA:Zn/n-Si Schottky barrier diodes (SBDs) to investigate the effect of organic interfacial layer on the main electrical characteristics. Zn doped poly(vinyl alcohol) (PVA:Zn) was successfully deposited on n-Si substrate by using the electrospinning system and surface morphology of PVA:Zn was presented by SEM images. The current–voltage (I–V) characteristics of these SBDs have been investigated at room temperature. The experimental results show that interfacial layer enhances the device performance in terms of ideality factor (n), zero-bias barrier height (ΦB0), series resistance (Rs), and shunt resistance (Rsh) with values of 1.38, 0.75 eV, 97.64 Ω, and 203 MΩ whereas those of Au/n-Si SBD are found as 1.65, 0.62 eV, 164.15 Ω and 0.597 MΩ, respectively. Also, this interfacial layer at metal/semiconductor (M/S) interface leads to a decrease in the magnitude of leakage current and density of interface states (Nss). The values of Nss range from 1.36×1012 at Ec—0.569 eV to 1.35×1013 eV?1 cm?2 at Ec—0.387 eV for Au/PVA:Zn/n-Si SBD and 3.34×1012 at Ec—0.560 eV to 1.35×1013 eV?1 cm?2 at Ec—0.424 eV for Au/n-Si SBD. The analysis of experimental results reveals that the existence of PVA:Zn interfacial layer improves the performance of such devices.  相似文献   

17.
We report a solution processed, p-doped film consisting of the organic materials 4,4′,4″-tris(3-methylphenylphenylamino)triphenylamine (MTDATA) as the electron donor and 2-(3-(adamantan-1-yl)propyl)-3,5,6-trifluorotetracyanoquinodimethane (F3TCNQ-Adl) as the electron acceptor. UV–vis–NIR absorption spectra identified the presence of a charge transfer complex between the donor and acceptor in the doped films. Field-effect transistors were used to characterize charge transport properties of the films, yielding mobility values. Upon doping, mobility increased and then slightly decreased while carrier concentration increased by two orders of magnitude, which in tandem leads to conductivity increasing from 4 × 10?10 S/cm when undoped to 2 × 10?7 S/cm at 30 mol% F3TCNQ-Adl. The hole density was calculated based on mobility values extracted from OFET data and conductivity values extracted from bulk IV data for the MTDATA: x mol% F3TCNQ-Sdl films. These films were then shown to function as the hole injection/hole transport layer in a phosphorescent blue OLED.  相似文献   

18.
Two molecules denoted as VC96 and VC97 have been synthesized for efficient (η = 6.13% @ 100 mW/cm2 sun-simulated light) small molecule solution processed organic solar cells. These molecules have been designed with the D1-A-D2-A-D1 structure bearing different central donor unit, same benzothiadiazole (BT) as π-acceptor and end capping triphenylamine. Moreover, the optical and electrochemical properties (both experimental and theoretical) of these molecules have been systematically investigated. The solar cells prepared from VC96:PC71BM and VC97:PC71BM (1:2) processed from CF (chloroform) exhibit a PCE (power conversion efficiency) of η = 4.06% (Jsc = 8.36 mA/cm2, Voc = 0.90 V and FF = 0.54) and η = 3.12% (Jsc = 6.78 mA/cm2, Voc = 0.92 V and FF = 0.50), respectively. The higher PCE of the device with VC96 as compared to VC97 is demonstrated to be due to the higher hole mobility and broader IPCE spectra. The devices based on VC96:PC71BM and VC97:PC71BM processed with solvent additive (3 v% DIO, 1,8-diiodooctane) showed PCE of η = 5.44% and η = 4.72%, respectively. The PCE device of optimized VC96:PC71BM processed with DIO/CF (thermal annealed) has been improved up to 6.13% (Jsc = 10.72 mA/cm2, Voc = 0.88 V and FF = 0.61). The device optimization results from the improvement of the balanced charge transport and better nanoscale morphology induced by the solvent additive plus the thermal annealing.  相似文献   

19.
Atomic layer deposited (ALD) HfO2/GeOxNy/Ge(1 0 0) and Al2O3/In0.53Ga0.47As(1 0 0) ? 4 × 2 gate stacks were analyzed both by MOS capacitor electrical characterization and by advanced physical characterization to correlate the presence of electrically-active defects with chemical bonding across the insulator/channel interface. By controlled in situ plasma nitridation of Ge and post-ALD annealing, the capacitance-derived equivalent oxide thickness was reduced to 1.3 nm for 5 nm HfO2 layers, and mid-gap density of interface states, Dit = 3 × 1011 cm?2 eV?1, was obtained. In contrast to the Ge case, where an engineered interface layer greatly improves electrical characteristics, we show that ALD-Al2O3 deposited on the In0.53Ga0.47As (1 0 0) ? 4 × 2 surface after in situ thermal desorption in the ALD chamber of a protective As cap results in an atomically-abrupt and unpinned interface. By avoiding subcutaneous oxidation of the InGaAs channel during Al2O3 deposition, a relatively passive gate oxide/III–V interface is formed.  相似文献   

20.
《Organic Electronics》2008,9(5):890-894
LaCuOSe:Mg is a wide-gap p-type semiconductor with a high conductivity and a large work function. Potential of LaCuOSe:Mg as a transparent hole-injection electrode of organic light-emitting diodes (OLEDs) was examined by employing N,N′-diphenyl-N,N′-bis (1,1′-biphenyl)-4,4′-diamine (NPB) for a hole transport layer. Photoemission spectroscopy revealed that an oxygen plasma treated surface of LaCuOSe:Mg formed a hole-injection barrier as low as 0.3 eV, which is approximately a half of a conventional ITO/NPB interface. Hole-only devices composed of a LaCuOSe:Mg/NPB/Al structure showed a low threshold voltage ∼0.2 V and high-density current drivability of 250 mA cm−2 at 2 V, which is larger by two orders of magnitude than that of ITO/NPB/Al devices. These results demonstrate that LaCuOSe:Mg has great potential as an efficient transparent anode for OLEDs and other organic electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号