首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Organic Electronics》2008,9(5):711-720
We have synthesized a novel fully soluble and low-temperature processable polyimide gate insulator (KSPI) through the one-step condensation polymerization of the monomers 5-(2,5-dioxytetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride and 4,4-diaminodiphenylmethane. Fully imidized KSPI was found to be completely soluble in organic solvents such as N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), γ-butyrolactone, dimethylsulfoxide (DMSO), and 2-butoxyethanol. Thin films of KSPI can be fabricated at only 150 °C and a pentacene OTFT with KSPI as a gate dielectric was found to exhibit a field effect mobility of 0.22 cm2/V s. To obtain a high performance organic thin-film transistor (OTFT), the KSPI surface was modified in our new technique by hybridization with a non-polar side chain containing a polyimide insulator (PI). The carrier mobility of a pentacene OTFT with a hybridized polyimide gate insulator (BPI-3) was found to be 0.92 cm2/V s. Our new low-temperature processable polyimides show promise as gate dielectrics for OTFTs.  相似文献   

2.
《Organic Electronics》2007,8(5):513-521
Various electroplated metal gate electrodes (Ni, Cu, and Au) on flexible polyimide (PI) substrates were applied to the fabrication of inverted staggered pentacene organic thin film transistors (OTFTs). The metal gate electrodes additively electroplated onto the patterned negative photoresist mask on the Cu(seed)/Cr(adhesion) layers sputter-deposited on the O2-plasma-treated PI substrates were effective in obtaining good adhesion between the metal gate electrode and organic substrate. It was found that the reduction in the surface roughnesses of the electroplated metal gate and of the subsequently deposited PVP (poly-4-vinyl phenol) gate dielectric layers was a critical factor in improving the device performance. The Ni-gated OTFT exhibited the best electrical characteristics, with a field-effect mobility of ≅0.2 cm2/V-s and a current on/off ratio of ≅103, due to the better chemical stability of the Ni electrode and the smoother surface of the PVP layer on the Ni electrode, as compared to the OTFTs with PVP/Cu or PVP/Au gates. The results of the flexibility test showed that the field-effect mobility and current on/off ratio were not changed significantly when the OTFTs were subjected to 10,000 cyclic bendings with a bending radius of 6 mm in tension mode (outward bending).  相似文献   

3.
《Microelectronics Journal》2007,38(8-9):919-922
We have investigated a double-layer structured gate dielectric for the organic thin films transistor (OTFT) with the purpose of improving the performance of the SiO2 gate insulator. A 50 nm PMMA layer was coated on top of the SiO2 gate insulator as organic insulator layer. The results demonstrated that using inorganic/organic compound insulator as the gate dielectric layers is an effective method to fabricate OTFTs with improved electric characteristics and decreased leakage current. Electrical parameters such as carrier mobility and on/off ratio by field effect measurement have been calculated. OTFT based on highly doped Si substrate with a field-effect mobility of 0.004 cm2/V s and on/off ratio of 104 have been obtained.  相似文献   

4.
Gelatin is a natural protein in the field of food, pharmaceutical and tissue engineering, which works very well as the gate dielectric for pentacene organic thin-film transistors (OTFTs). An aqueous solution process has been applied to form a gelatin thin film on poly(ethylene terephthalate) (PET) or glass by spin-coating and subsequent casting. The device performance of pentacene OTFTs depend on the bloom number (molecular weight) of gelatin. The pentacene OTFT with 300 bloom gelatin as the gate dielectric in air ambient exhibits the best performance with an average field-effect mobility (μFE) value of ca. 16 cm2 V?1 s?1 in the saturation regime and a low threshold voltage of ?1 V. The high performance of the pentacene OTFT in air ambient is attributed to the water resided in gelatin. The crystal quality of pentacene is not the key factor for the high performance.  相似文献   

5.
Surface properties of gate insulators strongly affect the device performance of organic thin-film transistors (OTFTs). To improve the performance of OTFTs, we have developed photo-sensitive polyimide gate insulator with fluorine groups. The polyimide gate insulator film could be easily patterned by selective UV exposure without any photoinitiator. The polyimide gate insulator film, fabricated at 130 °C, has a dielectric constant of 2.8 at 10 kHz, and leakage current density of <1.6 × 10?10 A/cm2 while biased from 0 to 90 V. To investigate the potential of the polyimide with fluorine groups as a gate insulator, we fabricated C10-BTBT TFTs. The field-effect mobility and the on/off current ratio of the TFTs were measured to be 0.76 ± 0.09 cm2/V s and >106, respectively.  相似文献   

6.
In this study, we have successfully explored the potential of a new bilayer gate dielectric material, composed of Polystyrene (PS), Pluronic P123 Block Copolymer Surfactant (P123) composite thin film and Polyacrylonitrile (PAN) through fabrication of metal insulator metal (MIM) capacitor devices and organic thin film transistors (OTFTs). The conditions for fabrication of PAN and PS-P123 as a bilayer dielectric material are optimized before employing it further as a gate dielectric in OTFTs. Simple solution processable techniques are applied to deposit PAN and PS-P123 as a bilayer dielectric layer on Polyimide (PI) substrates. Contact angle study is further performed to explore the surface property of this bilayer polymer gate dielectric material. This new bilayer dielectric having a k value of 3.7 intermediate to that of PS-P123 composite thin film dielectric (k  2.8) and PAN dielectric (k  5.5) has successfully acted as a buffer layer by preventing the direct contact between the organic semiconducting layer and high k PAN dielectric. The OTFT devices based on α,ω-dihexylquaterthiophene (DH4T) incorporated with this bilayer dielectric, has demonstrated a hole mobility of 1.37 × 102 and on/off current ratio of 103 which is one of the good values as reported before. Several bending conditions are applied, to explore the charge carrier hopping mechanism involved in deterioration of electrical properties of these OTFTs. Additionally, the electrical performance of OTFTs, which are exposed to open atmosphere for five days, can be interestingly recovered by means of re-baking them respectively at 90 °C.  相似文献   

7.
We have developed photo-sensitive, low-temperature processable, soluble polyimide (PSPI) gate insulator with excellent resistance to the photo-patterning process. The PSPI was synthesized through one-step condensation polymerization of monomers 5-(2,5-dioxytetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride (DOCDA) and 3,5-diaminobenzyl cinnamate (DABC). PSPI thin film, fabricated at 160 °C, has a dielectric constant of 3.3 at 10 kHz, and leakage current density of <1.7 × 10?10 A/cm2, while biased from 0 to 100 V. PSPI could be easily patterned by selective UV-light exposure and dipping into γ-butyrolactone. To investigate the potential of the polyimide as the photo-patternable gate insulator, we fabricated pentacene OTFTs and confirmed the PSPI’s resistance to the photo-patterning process. The photo-patternable polyimide shows promise as gate dielectrics for OTFTs.  相似文献   

8.
《Organic Electronics》2014,15(5):991-996
High performance organic thin-film transistors (OTFTs) are fabricated on an epoxy based photo-patternable organic gate insulating layer (p-OGI) using a top contact thin-film transistor configuration. This negative tone p-OGI material is composed of an epoxy type polymer resin, a polymeric epoxy cross-linker, and a sulfonium photoacid generator (PAG). Features from p-OGI can be precisely patterned down to ∼3 μm via i-line photolithography. In order to evaluate the potential of this epoxy type resin as a gate insulator, we evaluated the dielectric properties of the p-OGI and its gate insulating performance upon fabricating solution processed OTFTs using an organic semiconductor (OSC), namely tetrathienoacene-DPP copolymer (PTDPPTFT4). Results show that the PTDPPTFT4 based OTFTs with this p-OGI exhibit field-effect mobilities up to 1 cm2 V−1 s−1, indicating the potential of high performance solution processed OTFT based on an epoxy based p-OGI/OSC system.  相似文献   

9.
A polyhedral oligomeric silsesquioxane (POSS)-based insulating material with photocurable propyl-cinnamate groups (POSS-CYNNAM) was designed and synthesized through simple single step reaction for use as a gate dielectric in organic thin-film transistors (OTFT). POSS-CYNNAM was soluble in common organic solvents and formed a smooth thin film after spin-casting. A thin film of POSS-CYNNAM was cross-linked and completely solidified under UV irradiation without the use of additives such as photoacid generators or photoradical initiators. ITO/insulator/Au devices were fabricated and characterized to measure the dielectric properties of POSS-CYNNAM thin films, such as leakage current and capacitance. A pentacene-based OTFT using the synthesized insulator as the gate dielectric layer was fabricated on the transparent indium tin oxide (ITO) electrode, and its performance was compared to OTFTs using thermally cross-linked poly(vinyl phenol) (PVP) as the insulator. The fabricated POSS-CYNNAM OTFT showed a comparable performance to devices based on the PVP insulator with 0.1 cm2/Vs of the field effect mobility and 4.2 × 105 of an on/off ratio.  相似文献   

10.
Room-temperature exposure of spin-coated poly(3-hexylthiophene) (P3HT) films to ortho-dichlorobenzene vapor increases the field-effect mobility of the P3HT organic thin-film transistors (OTFTs). The mobility increases moderately with unsaturated vapor exposure, owing to increased crystallinity of the P3HT films; on the other hand, the mobility increases abruptly with saturated vapor exposure, to 0.11 cm2/V s. The saturated vapor exposure causes the P3HT films to reflow, leaving in the active area approximately 2–3 P3HT monolayers whose molecular ordering is enhanced by the flow-generated shear against the gate dielectric. Although the reflowed OTFTs degrade in air much faster than do the non-reflowed OTFTs due to the susceptibility of the ultra-thin reflowed films, they become highly stable when encapsulated, obtaining a lifetime of more than 3000 h.  相似文献   

11.
《Organic Electronics》2008,9(6):1040-1043
We have studied the fabrication of stable organic thin-film transistor (OTFT) for plastic electronics using hybrid multi-layer (HML) of parylene/Au/photoacryl/IZO (indium zinc oxide) on organic semiconductor. The HML-passivated OTFTs exhibited the field-effect mobility (μfe) of 0.2–0.3 cm2/V s with an on/off current ratio of 107 after annealing at 180 °C. The changes in on-, off- and subthreshold-currents of the HML-passivated OTFT were negligibly small during the storage of 781 h. Moreover, the hysteresis in transfer characteristics was negligible even after exposure of the OTFT to air for 781 h. These results indicate that HML-passivation is suitable for stable OTFT array for plastic electronics.  相似文献   

12.
This paper demonstrates the effects of the imidization ratio of polyimide gate insulators on the performance of organic thin-film transistors (OTFTs). We report the synthetic results of polyimide films imidized at a temperature of 200 °C along with an easily removed organic base catalyst (1,8-diazabicyclo[5.4.0]undec-7-ene, DBU), and their application in gate insulators of organic thin-film transistors. The degree of imidization increased to almost 100% after a thermal treatment at 200 °C for 40 min in the presence of DBU. The performance of the pentacene OTFT dramatically improved by using low temperature cured polyimide film as the gate insulator.  相似文献   

13.
《Organic Electronics》2008,9(5):721-726
We have studied the performance improvement of organic thin-film transistor (OTFT) with a solution based TIPS pentacene (6,13-bis(triisopropylsilylethynyl)pentacene) by inkjet printing. The TIPS pentacene with 1.0 wt.% solution in 1,2-dichlorobenzene was used for printing of an active layer of OTFT. The OTFT printed at room temperature shows a shoulder-like behavior but it disappears for the OTFT printed at the substrate temperature of 60 °C. The OTFT on plastic exhibited an on/off current ratio of ∼107, a threshold voltage of −2.0 V, a gate voltage swing of 0.6 V/decade and a field-effect mobility of 0.24 cm2/Vs in the saturation region.  相似文献   

14.
A solution-based transparent polymer was investigated as the gate dielectric for organic field-effect transistors (OFETs). Organic thin films (400 nm) are readily fabricated by spin-coating a polyhydrazide solution under ambient conditions on the ITO substrates, followed by annealing at a low temperature (120 °C). The smooth transparent dielectrics exhibited excellent insulating properties with very low leakage current densities of ~10?8 A/cm2. High performance OFETs with evaporated pentacene as organic semiconductor function at a low operate voltage (?15 V). The mobility could reach as high as 0.7 cm2/Vs and on/off current ratio up to 104. Solution-processed TIPS-pentacene OFETs also work well with this polymer dielectric.  相似文献   

15.
We have investigated organic thin-film transistors (OTFTs) with a bilayer of rubbed and evaporated hydrocarbon-based acene 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) as an active layer. Using a rubbing process after spin-coating the C8-BTBT, crystallinity of the C8-BTBT thin film was improved and resultant superior OTFT characteristics were realized. We obtained a field-effect mobility of 1.6 cm2/Vs, a threshold voltage of −8.2 V, an on-off ratio of 106, and a subthreshold swing of 55 mV/decade.  相似文献   

16.
《Microelectronics Journal》2007,38(4-5):509-512
Top contact organic thin-film transistors (TC OTFTs) based on pentacene are fabricated. For improving the contact characteristics between the organic semiconductor thin-film and gold electrodes, we doped the starburst molecular 4,4′,4″-tris{N,(3-methylpheny)-N-phenylamino}-triphenylamine) (m-MTDATA), which is an excellent hole injection material for the organic light-emitting devices (OLEDs), into the interlayer contact with the electrodes. Compared with conventional TC OTFT, the performances of the organic transistor with the doped interlayer are improved. The field-effect mobility increases from 0.16 to 0.51 cm2/V s, and threshold voltage downshifts from –11 to –2.8 V for the linear region. The on/off current ratio is more than 104 when the gate voltage varies from 0 to –20 V. We ascribe the improvements to the doped interlayer for which the contact resistance is reduced and the hole injection is enhanced.  相似文献   

17.
Tetracene-based organic thin-film transistors (OTFTs) were prepared using a neutral cluster beam deposition (NCBD) method. The effect of surface modification with an amphiphilic surfactant, octadecyltrichlorosilane (OTS), on the formation of thin films and the geometric influence of channel length and width on the transistor characteristics were systematically examined. The estimated trap density and temperature-dependence of the field-effect mobility in the range of 10–300 K demonstrated that surfactant pretreatment decreased the total trap density and activation energy for hole-transport by reducing structural disorder in the active layer. In particular, the room-temperature hole mobilities of 0.162 and 0.252 cm2/Vs for untreated and OTS-pretreated devices were among the best to date for polycrystalline tetracene-based transistors using SiO2 gate dielectric layers without any thermal post-treatment.  相似文献   

18.
The effects of the physical channel width on the characteristics of organic thin film transistors (OTFTs), made with 6,13-bis(triisopropyl-silylethynyl)-pentacene (TIPS-pentacene) embedded into poly-triarylamine (PTAA, hole conductor within an active channel), have been examined in this paper. The devices are estimated by measuring the drain-source current (IDS) for different contact metals such as Au and Ag, at fixed gate and drain voltages. The results show that the threshold voltage (VT) and IDS increase with increasing channel width. Furthermore, it has been observed that the field effect mobility is dependent on VT, which is influenced by the channel width. The OTFTs, produced using Au and Ag contacts, exhibited the highest values of mobility in the saturation regime, namely 5.44 × 10?2 and 1.33 × 10?2 cm2/Vs, respectively.  相似文献   

19.
Polar polymers (polyfluorene copolymers, PFN–PBT) with different polarities are utilized to modify the surface of tantalum pentoxide (Ta2O5) insulator in n-channel organic thin-film transistors (OTFTs). A high mobility of 0.55 cm2/Vs, high on/off current ratio of 1.7 × 105, and low threshold voltage of 2.8 V are attained for the OTFT with the modification polymers, the performances of which are much better than those of OTFT with only Ta2O5 insulator. The performances of the OTFT with only Ta2O5 insulator are only 0.006 cm2/Vs in mobility, 5 × 103 in on/off ratio, and 12.5 V in threshold voltage. Furthermore, it is found that the threshold voltage of the OTFTs with PFN–PBT modification layer is easily tuned by polarities of the polymers. Further studies show that self-assembly dipole moments in the polymers play an important role in the improvement of the OTFT performances.  相似文献   

20.
An AMOLED panel driven by an OTFT-backplane is an attractive display because OTFTs and OLEDs use organic materials with unique characteristics such as low temperature and solution processing ability, and thus are able to implement the key features of future displays. In this study we applied some printing technologies to fabricate an OTFT-backplane for AMOLEDs. Screen printing combined with photolithography with Ag ink was used for the gate electrodes and scan bus lines and contact pads. Ag metal lines with a width of 20 μm and thickness of 60 nm and resistivity of 3.0 × 10?5 Ω cm were achieved. Inkjet printing was applied to deposit TIPS-pentacene as an organic semiconductor. The OTFT-backplane using the Ag gate electrodes and TIPS-pentacene exhibited uniform performance over 17,500 pixels on a 7 in. panel. The mobility was 0.31 ± 0.05 cm2/V s with a deviation of 17%. The AMOLED panel successfully demonstrated its ability to display patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号