首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用Ti粉和Al粉为原料,通过限域原位反应烧结技术在石英管内制备了Ti-Al多孔材料。使用X射线衍射仪(XRD)、能谱仪(EDS)和扫描电镜(SEM)对多孔材料的物相组成、元素含量和微观形貌进行了分析,并以检测结果为基础,对原位反应烧结机理及物相演变路径进行了研究。采用多孔材料完整性测试仪对多孔材料的过滤性能进行了测试,研究了Al粉添加量对多孔材料最大冒泡孔径、相对透气系数和孔径分布的影响。结果表明:多孔材料中Si元素含量随着Al粉添加量的增大而逐渐提高,说明Al元素的添加对SiO2的分解及分解后Si原子向Ti-Al多孔基体中的扩散有促进作用,并伴有Ti-Si金属间化合物生成。当Al粉添加量为36%时,多孔材料的主相为TiAl,次生相为TiAl2;当Al粉添加量为50%时,相组成主要为TiAl3、TiAl2以及少量的Ti5Si3;而当Al粉添加量为62%时,相组成为TiAl3、TiAl2和TiSi2  相似文献   

2.
利用熔石英,六方氮化硼和氮化硅陶瓷粉末,通过冷等静压成型和在不同温度下进行无压烧结的方法制备了SiBON陶瓷复合材料,并对其进行了力学性能测试,分析了材料的物相组成与结构。实验结果表明:通过这种简单高效的工艺可以制得性能较好的SiBON陶瓷复合材料,且可通过控制材料组分和烧结温度调整材料的力学性能,其中,材料的致密度在67.3%~98.4%,抗弯强度为60~170 MPa,断裂韧性为0.8~2.1 MPa.m1/2,弹性模量为48~112 GPa。  相似文献   

3.
本文进行了烧结气氛和烧结温度对支撑体孔径、透过性能影响的研究。环拉实验结果表明,氢气烧结样品的抗拉强度87.56MPa,氢气+氯化铵活化烧结样品115.20MPa,强度提高了30%。通过烧结温度对支撑体力学性能影响的研究,得到了支撑体致密度和力学性能之间的关系,可实现通过测试多孔材料的密度来预测多孔材料的强度。  相似文献   

4.
金属-硼-碳(M-B-C)系硬质材料的成分范围能给出的密度范围很宽,即7.8~17.1吨/米~3,而硬度值的变化范围很小。该系中的几种合金的耐磨性和断裂韧性值都在  相似文献   

5.
李新 《热加工工艺》2013,42(4):74-75,79
采用3TiC/Si/0.2A1粉体为原料,通过无压烧结反应合成了片状TiC晶粒.采用XRD、SEM和EDS对试样的物相组成、微观形貌和微区成分进行分析.结果表明,在1100~1200℃、保温2h,原料反应合成了主相Ti3SiC2,同时含有少量TiC、SiC相;当温度为1300℃时,Ti3SiC2开始明显分解;当温度升至1350℃时,试样中Ti3SiC2完全分解,产物主要由TiC相和少量SiC组成;六方TiC晶粒边长5μm.  相似文献   

6.
无压反应烧结MOSi2—SiCp复相材料的制备与性能   总被引:2,自引:0,他引:2  
采用无压反应烧结方法制备了MOSi2-SiCp复相材料。结果表明:直接采用元素粉Mo,Si与Si,C粉或SiC粉反应,较难制得致密的MOSi2-SiCp复相材料;而采用MoSi2合金粉同Si,C反应可获得致密的MOSi2-SiCp复相材料。同时对不同SiC含量的MOSi2-SiCp复相材料的强度和电阻率进行了测定分析,得到强度最高值为157MPa,电阻率随SiC含量的增加而增加。  相似文献   

7.
8.
为了能够利用YAG优异的性能开发出更多的功能材料,通过调整无压烧结技术工艺参数成功制备YAG多孔陶瓷材料。结果表明:1500℃烧结的YAG多孔陶瓷的气孔率与1550℃烧结的陶瓷相近,但是1550℃制备的陶瓷具有较多烧结颈使抗压强度较高。保温2 h的样品与保温1 h的样品进行对比表明,保温2 h样品包裹气泡长大使气孔率高,液相较多颗粒联接牢固使抗压强度高。升温速度为5℃/min制备的陶瓷比升温方式10℃/min制备的陶瓷气孔率和抗压强度都高。在800℃排碳所制备的样品的气孔率和抗压强度都比1000℃排碳的高。通过分析工艺参数与性能之间的内在联系,得出烧结温度为1550℃,保温2 h,升温速度为5℃/min,800℃排碳时间1 h制备的YAG多孔陶瓷材料较为适合,其材料气孔率为59.4%,抗压强度为8.55 MPa。  相似文献   

9.
烧结金属多孔材料研究进展   总被引:2,自引:0,他引:2  
烧结金属多孔材料兼具金属材料和多孔材料的特性,具有机械强度高、可焊接、抗腐蚀、耐高温、易加工等优点,呈现出功能性强、应用面广、新品种不断涌现、使用空间不断拓展的现象.近年来,金属多孔材料的研究较为活跃,形成了多学科并存的制备技术体系,开发出了一系列新的材质、新型孔结构及物理化学性能的金属多孔材料,并且很快进入了实际应用.随着现代工业的进步,金属多孔材料正朝着高性能、多功能化方向发展,具体体现在孔结构的梯度化、孔径的微细化、材质的合金化复合化、制备与应用研究一体化等等,是新材料家族中特别具有生命力的一类可持续发展的材料.  相似文献   

10.
烧结金属多孔材料兼具金属材料和多孔材料的特性,具有机械强度高、可焊接、抗腐蚀、耐高温、易加工等优点,呈现出功能性强、应用面广、新品种不断涌现、使用空间不断拓展的现象.近年来,金属多孔材料的研究较为活跃,形成了多学科并存的制备技术体系,开发出了一系列新的材质、新型孔结构及物理化学性能的金属多孔材料,并且很快进入了实际应用.随着现代工业的进步,金属多孔材料正朝着高性能、多功能化方向发展,具体体现在孔结构的梯度化、孔径的微细化、材质的合金化复合化、制备与应用研究一体化等等,是新材料家族中特别具有生命力的一类可持续发展的材料.  相似文献   

11.
不锈钢纤维烧结多孔材料孔结构分形分析   总被引:1,自引:0,他引:1  
借助分形几何理论研究了不锈钢纤维烧结多孔材料孔结构的分形特征.通过对不锈钢纤维烧结多孔材料的扫描图像进行数字化处理,并利用盒维法计算分形维数,研究了盒维法计算分形维数的影响因素.确定出分形维数与多孔材料孔隙度之间的定量关系,同时说明了分形维数的物理意义.  相似文献   

12.
分别以自制的和商业的CeO2-ZrO2复合粉为原料,采用无压烧结法制备了CeO2-ZrO2复合陶瓷块体材料,分析了烧结温度对两种材料的微观组织和力学性能的影响,并采用X射线衍射法(XRD)研究了两种材料在应力诱导下的t→m相变增韧效应。结果表明:由自制复合粉制得的CeO2-ZrO2陶瓷材料其综合力学性能均比由商业粉制得的陶瓷材料高,并且其应力诱导相变增韧效应更强;此外,在烧结温度为1450℃、保温时间为4h的条件下,由自制复合粉制得的材料的相对密度达到98.7%,其弯曲强度和断裂韧性分别为576MPa及5.6MPa·m1/2,这一结果与该材料在1450℃下充分致密化有关。  相似文献   

13.
以钛粉和铝粉为主要原料,碳酸氢铵作为造孔剂,利用粉末冶金法在真空烧结条件下制得多孔钛铝(Ti-Al)合金材料。研究了造孔剂含量、烧结温度、钛铝配比以及加入稀土氟化镧(LaF_3)含量对多孔Ti-Al材料孔隙率、力学性能及组织结构的影响,最终确定La F3的最佳含量,筛选出了最佳烧结方案。结果表明:钛铝配比为1:1,造孔剂含量为45wt%,烧结温度为850℃时,为最佳烧结方案,此时的多孔Ti-Al合金材料综合性能最优。添加少量的稀土LaF_3主要影响多孔Ti-Al合金的抗压屈服强度和弹性模量,添加0.3wt%的稀土LaF_3时得到的多孔Ti-Al合金材料的力学性能最好。  相似文献   

14.
研究了铁基粉末冶金摩擦材料的粉末轧制烧结工艺,在轧制前将非金属粉末颗粒用化学镀的方法预先包覆上一层金属铜,再把按比例混制好的多元粉末按一定的轧制工艺要求轧制成带状生胚,然后在真空烧结炉中进行无压力烧结。该种材料经测试其密度为4.9-5.5g/cm^3,μs〉4.5,μd〉0.33~0.40,磨损率≤4.09×10-7cm^3/J,完全可以达到常规法生产的粉末冶金摩擦材料所要求的性能指标,且该工艺方法所需设备和工艺过程相对常规有压法要简化。  相似文献   

15.
利用TiC粉、Ti粉和Al粉为原料,以摩尔比为TiCAlTi=21.21混合,通过无压烧结的方法合成高纯的Ti3AlC2粉末材料.研究了在不同的烧结温度(1200℃~1500℃)分别保温15 min,以及在1300℃下保温不同时间的烧结结果.最终得出结论,在1300℃~1400℃保温15 min后可以得到高纯度的Ti3AlC2材料,Ti3AlC2含量高达96.76ω/%.另外,由于1500℃时合成的样品中晶粒已经很大,使得其在做粉末X-射线衍射时很容易产生织构,使Ti3AlC2的{002}峰异常增强.  相似文献   

16.
梯度多孔材料具有高过滤精度大透气系数的特点,作为过滤器大大降低了压降,从而降低了生产成本。粉末烧结是制备过滤用梯度多孔材料的主要工艺方法。本文综述了国内外过滤用梯度多孔材料的现状,包括其分类、表征以及常用的梯度成型技术和粉末烧结技术,对比了过滤用梯度多孔材料的经济优势。同时,也表述了其中存在的问题和一些解决方法。  相似文献   

17.
采用模压成形工艺制备连续梯度不锈钢多孔材料。试验对所制备的不同厚度连续梯度不锈钢多孔试样的收缩率及微观形貌进行了分析。结果表明:通过烧结试样的几何轮廓证实连续梯度多孔试样烧结后发生变形——相邻梯度层烧结应力的不同造成圆柱状试样烧结后变成圆台状;烧结过程中连续梯度多孔试样相邻梯度层间力的作用能够促进粉末烧结,对试样的烧结收缩产生影响,并且,粉末粒度越小,这种影响越明显;选择合适的级配粉末以及梯度层间合理的粉末体积或质量搭配,通过不同梯度层间烧结应力的相互抑制作用,可以实现同步收缩烧结,有效解决连续梯度不锈钢多孔材料烧结过程中出现的变形、开裂问题。  相似文献   

18.
采用元素混合粉偏扩散-反应合成-粉末烧结方法制备了Ti-Al金属间化合物多孔材料,对其进行了拉伸试验研究,分析其拉伸变形特征,揭示出孔隙率对拉伸性能的影响规律以及拉伸断裂微观机理。结果表明:Ti-Al多孔材料的拉伸应力-应变曲线大致可分为弹性、屈服、强化和破坏4个阶段,无颈缩现象;力学性能指标(如弹性模量、屈服极限和强度极限等)均随孔隙率的增大而减小,延伸率远低于5%,呈现出明显的室温脆性;断口特征宏观上表现为脆性断裂,微观上同时存在穿晶断裂与沿晶断裂,其断裂机理与Ti-Al金属间化合物致密体的显微组织密切相关。  相似文献   

19.
介绍了泡沫铜与铜粉的复合多孔材料松装烧结成形工艺;分别采用SEM观察其几何结构特征和称重法,分析了复合多孔材料的收缩率及孔隙率。结果表明,该材料具有大比表面积、高孔隙率特征;采用与纯铜粉烧结类比的方法,探讨了烧结温度、保温时间及铜粉粒径对复合多孔材料的收缩率和孔隙率的影响。结果显示,相比于铜粉烧结多孔材料,泡沫金属与铜粉烧结复合多孔材料具有更小的收缩率及更大的孔隙率。  相似文献   

20.
烧结FeCrAl纤维多孔材料的吸声特性   总被引:2,自引:0,他引:2  
采用Φ20 μm FeCrAl纤维制备纤维多孔材料,孔隙度大于85%.在常声压与高声压条件下分别对烧结FeCrAl纤维多孔材料进行吸声性能检测.结果表明,在常声压下,材料的吸声特性随孔隙度的增加而提高,但是对于高频的吸收,孔隙度过高或过低都不利于吸收.厚度越大,材料的吸声性能越好.增加空腔可以提高材料在低频的吸声性能;在高声压条件下(100~140 dB),该材料的吸声特性不随声压级的变化而变化,各参数对吸声性能的影响规律与在常声压条件下的规律一致.频率在2.5~6.4 kHz之间,声压级为120 dB条件下,孔隙度为94%、20 mm厚的FeCrAl纤维多孔材料吸声系数达到90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号