首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electron affinity (EA) of an organic semiconductor is a measure of the electron transport level. Although reliable values of the EA are required for designing the device architecture of organic light-emitting diodes (OLED), there were no appropriate methods. Recently we have developed low-energy inverse photoemission spectroscopy which enables us to determine the EA of organic materials in solid with the precision required for research of OLED. Using this new technique, we precisely determined EA of typical OLED materials, TCTA, CBP, Ir(ppy)3, BCP, Alq3 and Liq as well as a newly developed dopant 4CzIPN. The obtained electron affinities are generally smaller by about 1 eV than the commonly believed values urging the reconsideration of the electron injection/transport mechanisms in OLED. We also compare EAs determined by various experimental and calculation methods for 29 materials. The results show that the reduction potential gives a reasonable estimate rather than the optical gap and ionization energy.  相似文献   

2.
《Organic Electronics》2005,6(1):11-20
A relationship between the energy of the highest occupied molecular orbital (HOMO) and the oxidation potential of molecular organic semiconductors is presented. Approximating molecules as dipoles consisting of a positively charged ion core surrounded by an electron cloud, the HOMO energy (EHOMO) is calculated as that required to separate these opposite charges in a neutral organic thin film. Furthermore, an analysis of image charge forces on spherical molecules positioned near a conductive plane formed by the electrode in an electrochemical cell is shown to explain the observed linear relationship between EHOMO and the oxidation potential. The EHOMO’s of a number of organic semiconductors commonly employed in thin film electronic devices were determined by ultraviolet photoemission spectroscopy, and compared to the relative oxidation potential (VCV) measured using pulsed cyclic voltammetry, leading to the relationship EHOMO = −(1.4 ± 0.1) × (qVCV)  (4.6 ± 0.08) eV, consistent with theoretical predictions.  相似文献   

3.
《Organic Electronics》2014,15(8):1810-1814
The electronic structures of three new synthesised tetrakis Erbium(III) quinolinate complexes (Na[ErQ4], Na[Er(Q57Br)4] and Na[Er(Q57I)4]) have been studied by means of photoemission and absorption spectroscopies and compared with corresponding experimental data of Tris(8-hydroxyquinolinate)Erbium(III) (ErQ3). Core level and valence band spectra of Na[ErQ4] are very similar to ErQ3 ones apart from a slight modification in the O 1s core level. The fundamental physical parameters for optical device applications as ionization energy and optical gap are the same, corresponding to 5.2 eV and 2.9 eV respectively. For the other two molecules, the introduction of halogens (Br, I) in the ligands leads to a reduction of 0.2 eV for the optical gap and to an increase of 0.5 eV for the ionization energy with respect to ErQ3.  相似文献   

4.
《Organic Electronics》2008,9(2):234-240
An important parameter for applications of organic semiconductor in devices is their charge-carrier mobility. It has been predicted theoretically that forming face-to-face π-stacks at the molecular level may increase the charge-carrier mobility due to enhanced electronic couplings. To achieve different molecular arrangements, we recently synthesized and crystallized a tetracene derivative, 5,6,11,12-tetrachlorotetracene. The X-ray crystal structure shows that the molecules form slip π-stacks in contrast to herringbone type tetracene. Comparison of electrostatic potential maps of tetrachlorotetracene and the parent tetracene molecule shows that the slip-stack packing structure is favored in terms of electrostatic forces due to the substituents in tetrachlorotetracene crystals. Single crystal field-effect transistors based on tetrachlorotetracene crystals show p-type behavior with a field-effect mobility of 1.7 cm2/V s, which is among the best values reported for organic field-effect transistors. These results, together with several recent findings, may serve as guidance in search of new organic semiconductors with high performance.  相似文献   

5.
Metal-atom diffusions in oligoacene model solid are studied by the first-principles density-functional calculations. We found that the high-electronegativity atoms such as Au produce hybridization-induced weak bonds with molecules and easily move in solid along the molecular axis direction with small potential barriers less than 0.4 eV, while the low-negativity atoms like Al are bound to molecules by relatively strong ionic-like interaction and are difficult to diffuse between molecules with large potential barriers around 0.9 eV. By analysing the changes of electronic structures and adiabatic potentials in various molecule configurations, we showed that the diffusion features, such as the diffusion path and the diffusion barrier, are determined at least by two factors: (i) the bonding between metal atoms and molecules and (ii) the elastic repulsion between metal atoms and neighboring molecules. These diffusion properties are expected common to most π-conjugated organic semiconducting molecular solids.  相似文献   

6.
We investigate the interaction mechanisms at metal–organic and organic–organic interfaces in highly-ordered ultra-thin layers of the dye molecules 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) and tin(II)-phthalocyanine (SnPc) on single crystalline noble metals. The ultra-thin films are characterized by means of in situ differential reflectance spectroscopy (DRS), followed by an extraction of the optical functions by application of a numerical algorithm. For the first time, DRS data of PTCDA and SnPc films on Ag(1 1 1) are presented. We found that for the contact layers of PTCDA and SnPc the well-known covalent interaction between adsorbate and substrate is manifested in broad and structureless absorption spectra. Surprisingly, the optical spectra of the respective first monolayers on Ag(1 1 1) are almost identical despite of the rather different electronic structure of the free molecules. The special character of the optical spectra is emphasized by a comparison with PTCDA and SnPc monolayers on Au(1 1 1) where the electronic interaction at the metal–organic interface is much weaker. Quite differently from the contact layer, the second layer of the same molecule on Ag(1 1 1) clearly shows monomeric behavior which can only be observed if the electronic and optical coupling with the surrounding molecules and the substrate is faint. However, a very weak out-of-plane electronic interaction remains as concluded from the comparison with the spectra obtained on inert mica substrates. We also present structural data acquired with low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM) of SnPc on Au(1 1 1).  相似文献   

7.
We report on a new p-type organic semiconductor single crystal, 5,10,15-trimethyl-10,15-dihydro-5H-diindolo[3,2-a:3’,2’-c]carbazole (N-trimethyltriindole). This molecule crystallizes forming a highly ordered columnar structure in which stacked molecules are situated at two alternating distances (3.53 Å and 3.68 Å) along the column as determined by single crystal X-ray diffraction analysis. These short intermolecular distances between adjacent units, make this system an ideal candidate for charge-transport processes along the stacks.Relevant parameters for transport (i.e. internal reorganization energies, transfer integral) have been estimated by DFT calculations at a 6-311G(d,p)/B3LYP level of theory. As a double check for the transfer integral, the electronic band structure of a one-dimensional stack of molecules has been computed. The electronic properties of this material have been studied both theoretically and experimentally. Its HOMO value is found to coincide with Au work function (ΦAu = 5.1 eV), thus low barriers are expected for hole injection from gold electrodes. The hole mobility of this material has been predicted theoretically considering a hopping-type mechanism for the charge-transport and determined experimentally at the space charge limited current (SCLC) regime of the current–voltage measurements. Both theoretical and experimental values are in good agreement. The high hole mobility (μmin = 0.4 cm2 V?1 s?1) of this material points towards its useful application in the organic electronics arena. N-Trimethyltriindole single crystals constitute an essential model to study transport properties of triindole-based materials and to design new derivatives with improved electronic performance.  相似文献   

8.
A number of semiconducting organic molecules capable of wet processing exhibit high carrier mobility and current modulation. In this work, we synthesized photopatternable π-conjugated star-shaped molecules and characterized their physical properties. The solubility of the synthesized molecules is very good for solution processing. The synthesized organic semiconducting multi-branched molecules are capable of photopatterning by virtue of photopolymerization of the reactive pentadienyl end groups. The transistor devices using these molecules provided a field-effect mobility of 1.3(±0.2) × 10?3–3.7(±0.5) × 10?3 cm2 V?1 s?1 as well as a high current on/off ratio (Ion/off > 103) and a low threshold voltage. In the case of the photoreactive star-shaped conjugated molecule HP2P, it was found that field-effect mobility was maintained even after the photocrosslinking process. This result can be used in the design of photopatternable semiconductor molecules for thin-film transistor electronic applications.  相似文献   

9.
Laser stimulation with 1300 nm as thermal (TLS) and with 1064 nm as photoelectric (PLS) laser stimulation techniques are now widely used in failure analysis of Integrated Circuits. The stimulation signatures when using a 1064 nm laser are often a combination of PLS and TLS along with laser induced impact ionization. The results show the existence of laser induce impact ionization current component when high laser power is applied. This work presents a quantitative investigation of 1064 nm laser stimulation effects on single NMOSFET devices. For high laser power applications the impact ionization current becomes the dominant component for 1064 nm laser stimulation.  相似文献   

10.
《Organic Electronics》2014,15(9):2126-2134
Water-gated organic transistors have attracted considerable attention in the field of biosensors, thanks to their capability of operating in the aqueous environment typical of biological systems at very low voltages (∼1 V). Some examples have been recently reported in the literature, employing different organic materials as the active semiconducting layer, ranging from small molecules to single crystals. Here we report on water-gated polymer-based organic-field effect devices using poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT) as the active layer. Very promising electronic performances, in terms of mobility and operating voltages are obtained; notably, the charge carrier mobility is in the order of 0.08 cm2/V s, which is of the same order of magnitude of values reported for single-crystal based water-gated devices, and consistent with values reported for solid-state polymer dielectric transistors. Moreover, the pBTTT-based device shows improved electrochemical stability, as compared to previously reported polymer based water-gated devices. Importantly, good functioning of the device is demonstrated also when water is replaced by physiological-like solutions. Critical to the transistors operation, besides the good transport properties of the active material, is the key-role played by alkyl side chains and ordered morphology of the polymer at the interface with the liquid environment, which we highlight here for the first time. Our contribution overall provides a useful step towards the development of bio-organic sensors, with enhanced properties in terms of sensitivity and stability, and for a successful exploitation of organic based field effect transistors in biotic/abiotic interfaces.  相似文献   

11.
Using the example of Diindenoperylene (DIP) a strong dependence of ionization potential, electron affinity and transport gap on the growth conditions of an organic molecular thin film is demonstrated. DIP single crystals show a remarkable polymorphism as single crystals as well as crystalline films on weakly interacting substrates like Au or SiO2 surfaces. We have investigated DIP thin films on Ag(1 1 1) substrates and found a strong dependence of the photoemission and inverse photoemission spectra as well as of the low energy electron diffraction (LEED) patterns on the substrate temperature. Three different temperature regions could be identified with distinct reproducible signatures in the structural data as well as in the valence level spectra. Peak positions, line widths, and relative intensities directly correlate with the degree of order and with the molecular orientation. Moreover, we identified a systematic change of the structural quality ranging from high mosaicity at low temperature (<150 K) via small ordered domains (150–250 K) to a high degree of order at elevated temperature (>350 K).  相似文献   

12.
A study on p-doping of organic wide band gap materials with Molybdenum trioxide using current transport measurements, ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy is presented. When MoO3 is co-evaporated with 4,4′-Bis(N-carbazolyl)-1,1′-biphenyl (CBP), a significant increase in conductivity is observed, compared to intrinsic CBP thin films. This increase in conductivity is due to electron transfer from the highest occupied molecular orbital of the host molecules to very low lying unfilled states of embedded Mo3O9 clusters. The energy levels of these clusters are estimated by the energy levels of a neat MoO3 thin film with a work function of 6.86 eV, an electron affinity of 6.7 eV and an ionization energy of 9.68 eV. The Fermi level of MoO3-doped CBP and N,N′-bis(1-naphtyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (α-NPD) thin films rapidly shifts with increasing doping concentration towards the occupied states. Pinning of the Fermi level several 100 meV above the HOMO edge is observed for doping concentrations higher than 2 mol% and is explained in terms of a Gaussian density of HOMO states. We determine a relatively low dopant activation of ~0.5%, which is due to Coulomb-trapping of hole carriers at the ionized dopant sites.  相似文献   

13.
Micro and nano resonators have been proposed as mass sensors with very high sensitivity. A special class of resonators, vertical micro-pillars, has been recently introduced with increasing mass detection capability, high sensor density and uniformity and reduced sensitivity to contamination and non-specific target absorption. Herein, we describe a newly conceived vertical micro-resonator with inverted tapered shape. With sensitivity of 33 Hz/fg and the reproducibility of 0.1 fg. The proposed geometry allowed the development of a new self-calibrating functionalization strategy which also makes our pillars very suitable for passing from liquid to dry environment. Selective adsorption of molecules is demonstrated and the application of the detector for a test target made of a self assembled monolayer of organic molecules is reported. The measured mass of the adsorbed molecules is 64 fg which corresponds to a density of 6.1 × 1014 mol/cm2.  相似文献   

14.
We report that solution-based treatment of Cu electrodes with strong electron acceptor molecules significantly decreases the contact resistance towards organic semiconductors, which is advantageous for applications such as organic field-effect transistors (OFETs). Spin-coating solutions of tetracyanoquinodimethane (TCNQ) or tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) onto Cu electrodes results in strongly chemisorbed acceptor (sub-)monolayers, which increase the electrode work function from 4.5 eV (bare Cu) up to 5.2 eV (F4-TCNQ-treated) even in air, as evidenced by X-ray photoelectron spectroscopy and photoelectron yield spectroscopy. The use of such modified electrodes in flexible OFETs with poly(3-hexylthiophene)-dithienyltetrafluorobenzene (P3HT-TFT) as semiconductor lead to a twofold increase of the on-current in the saturation regime and a decrease of the threshold voltage from ?20 V (bare Cu) to ?7 V (F4-TCNQ-treated). These results confirm that this simple solution-based process is viable for lowering organic/metal contact resistances in organic electronic devices.  相似文献   

15.
Using a 4,4′,4′′-tris(N-carbazolyl)-triphenylamine (TCTA) small molecule interlayer, we have fabricated efficient green phosphorescent organic light emitting devices by solution process. Significantly a low driving voltage of 3.0 V to reach a luminance of 1000 cd/m2 is reported in this device. The maximum current and power efficiency values of 27.2 cd/A and 17.8 lm/W with TCTA interlayer (thickness 30 nm) and 33.7 cd/A and 19.6 lm/W with 40 nm thick interlayer are demonstrated, respectively. Results reveal a way to fabricate the phosphorescent organic light emitting device using TCTA small molecule interlayer by solution process, promising for efficient and simple manufacturing.  相似文献   

16.
Many applications that rely on organic electronic circuits still suffer from the limited switching speed of their basic elements – the organic thin film transistor (OTFT). For a given set of materials the OTFT speed scales inversely with the square of the channel length, the parasitic gate overlap capacitance, and the contact resistance. For maximising speed we pattern transistor channels with lengths from 10 μm down to the sub-micrometre regime by industrially scalable UV-nanoimprint lithography. The reduction of the overlap capacitance is achieved by minimising the source–drain to gate overlap lengths to values as low as 0.2 μm by self-aligned electrode definition using substrate reverse side exposure. Pentacene based organic thin film transistors with an exceptionally low line edge roughness <20 nm of the channels, a mobility of 0.1 cm2/Vs, and an on–off ratio of 104, are fabricated on 4″ × 4″ flexible substrates in a carrier-free process scheme. The stability and spatial distribution of the transistor channel lengths are assessed in detail with standard deviations of L ranging from 185 to 28 nm. Such high-performing self-aligned organic thin film transistors enabled a ring-oscillator circuit with an average stage delay below 4 μs at an operation voltage of 7.5 V.  相似文献   

17.
The lowest unoccupied molecular orbital (LUMO) energies of a variety of molecular organic semiconductors have been evaluated using inverse photoelectron spectroscopy (IPES) data and are compared with data determined from the optical energy gaps, electrochemical reduction potentials, and density functional theory (DFT) calculations. A linear fit to the electrochemical reduction potential (relative to an internal ferrocene reference) vs. the LUMO energy determined by IPES gives a slope and intercept of ?1.19 ± 0.08 eV/V and ?4.78 ± 0.17 eV, respectively, and 0.92 ± 0.04 and ?0.44 ± 0.11 eV, respectively, based on the DFT calculated LUMO energies. From these fits, we estimate the LUMO and exciton binding energies of a wide range of organic semiconductors.  相似文献   

18.
《Organic Electronics》2007,8(5):505-512
We have utilized the π–π interactions between 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) molecules and temperature-induced morphology changes to synthesize one-dimensional (1D) nanostructures of PTCDA on a heated (ca. 100 °C) titanium substrate through vacuum sublimation. Because of the pillared Ti structures and the presence of reactive Ti–Cl sites, the titanium substrate played a crucial role in assisting the PTCDA molecules to form 1D nanostructures. The average diameter of the nanofibers deposited on the Ti-CVD substrate, a Ti substrate formed by chemical vapor deposition (CVD), at 100 °C was ca. 84 nm, with lengths ranging from 100 nm to 3 μm. When the PTCDA nanofibers were biased under vacuum, the emission current remained stable. The turn-on electric field for producing a current density of 10 μA/cm2 was 8 V/μm. The maximum emission current density was 1.3 mA/cm2, measured at 1100 V (E = 11 V/μm). From the slope of the straight line obtained after plotting ln(J/E2) versus 1/E, we calculated the field enhancement factor β to be ca. 989. These results demonstrate the PTCDA nanofibers have great potential for applicability in organic electron-emitting devices.  相似文献   

19.
We fabricated an 8 × 8 cross-bar array-type organic nonvolatile memory devices on twistable poly(ethylene terephthalate) (PET) substrate. A composite of polyimide (PI) and 6-phenyl-C61 butyric acid methyl ester (PCBM) was used as the active material for the memory devices. The organic memory devices showed a high ON/OFF current ratio, reproducibility with good endurance cycle, and stability with long retention time over 5 × 104 s on the flat substrate. The device performance remained well under the twisted condition with a twist angle up to ~30°. The twistable organic memory device has a potential to be utilized in more complex flexible organic device configurations.  相似文献   

20.
We report the effect of an electron-donating unit on solid-state crystal orientation and charge transport in organic field-effect transistors (OFETs) with thienoisoindigo (TIIG)-based small molecules. End-capping of different electron-donor moieties [benzene (Bz), naphthalene (Np), and benzofuran (Bf)] onto TIIG (giving TIIG-Bz, TIIG-Np, and TIIG-Bf) is resulted in different electronic energy levels, solid-state morphologies and performance in OFETs. The 80 °C post-annealed TIIG-Np OFETs show the best device performance with a best hole mobility of 0.019 cm2 V−1 s−1 and threshold voltage of −8.6 ± 0.9 V using top gate/bottom contact geometry and a CYTOP gate dielectric. We further investigated the morphological microstructure of the TIIG-based small molecules by using grazing incidence wide angle X-ray scattering, atomic force microscopy and a polarized optical microscope. The electronic transport levels of the TIIG-based small molecules in thin-film states were investigated using ultraviolet photoelectron spectroscopy to examine the charge injection properties of the gold electrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号