共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jen-Hsien Huang Kuang-Chieh Li Hung-Yu Wei Po-Yen Chen Lu-Yin Lin Dhananjay Kekuda Hong-Cheu Lin Kuo-Chuan Ho Chih-Wei Chu 《Organic Electronics》2009,10(6):1109-1115
A low-bandgap polymer (PF-PThCVPTZ) consisted of fluorene and phenothiazine was designed and synthesized. With the donor–acceptor segment, the partial charge transfer can be built in the polymer backbone leading to a wide absorbance. The absorption spectrum of PF-PThCVPTZ exhibits a peak at 510 nm and an absorption onset at 645 nm in the visible range. As blended with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) as an electron acceptor, narrow bandgap PF-PThCVPTZ as electron donor shows significant solar cell performance. Under AM 1.5 G, 100 mA/cm2 illumination, a power conversion efficiency (PCE) of 1.85% was recorded, with a short circuit current (JSC) of 5.37 mA/cm2, an open circuit voltage (VOC) of 0.80 V, and a fill factor (FF) of 43.0%. 相似文献
3.
Yanlian Lei Qunliang Song Yong Zhang Ping Chen Rong Liu Qiaoming Zhang Zuhong Xiong 《Organic Electronics》2009,10(7):1288-1292
The organic magnetoconductance (MC) effects in poly(3-hexylthiophene): [6,6]-phenyl-C61-butyricacid methylester based bulk heterojunction solar cells were studied in dark and under illumination. The correlations between the MC and current character were revealed in this study. Results show that the dark current always exhibits a negative MC whereas a sign change in MC under illumination occurs at the bias around the open circuit voltage Voc. We suggest that the positive MC in photocurrent is due to the field dependent conversion of singlet electron–hole pairs to triplet states and the negative MC is associated with space charge limited current with traps. Other possible mechanisms about the magnetoconductance effects are also discussed. 相似文献
4.
In this work, we reported efficient polymer solar cells with balanced hole/electron mobilities tuned by the acceptor content in bulk heterojunction blend films. The photovoltaic cells were fabricated with two new wide band-gap D-A polymers PBDDIDT and PBDDIDTT as the donor material. The molecular conformations of new polymers are carefully evaluated by theoretical calculations. The results of photovoltaic studies show that two devices reach their optimal conditions with rich PC71BM content up to 80% in blend films, which is uncommon with most of reported PSCs. The as-cast devices based on PBDDIDT and PBDDIDTT reveal good photovoltaic performance with PCE of 7.04% and 6.40%, respectively. The influence of PC71BM content on photovoltaic properties is further detailed studied by photoluminescence emission spectra, charge mobilities and heterojunction morphology. The results exhibit that more efficient charge transport between donor and acceptor occurs in rich PC71BM blend films. Meanwhile, the hole and electron mobilities are simultaneously enhanced and afford a good balance in rich PC71BM blend films (D/A, 1:4) which is critical for the improvement of current density and fill factors. 相似文献
5.
Tetsuro HoriTetsuya Masuda Naoki FukuokaTakeshi Hayashi Yasuo Miyake Toshiya KamikadoHiroyuki Yoshida Akihiko Fujii Yo ShimizuMasanori Ozaki 《Organic Electronics》2012,13(2):335-340
The improvement of long-wavelength sensitivity in bulk heterojunction organic thin-film solar cells based on poly(3-hexylthiophene) (P3HT) by the addition of the soluble phthalocyanine derivative, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2) is reported. C6PcH2 possesses near-infrared absorption and can be mixed with a P3HT:1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM) bulk heterojunction active layer. By doping C6PcH2, the photosensitivity in the long-wavelength region was improved, and the energy conversion efficiency reached 3.0% at a composition ratio of P3HT:C6PcH2:PCBM = 10:3:10. We discuss the principle of photoconversion in the bulk heterojunction solar cell based on the P3HT:C6PcH2:PCBM active layer by taking into consideration the existence of both highly ordered P3HT domains and hexagonal columnar structures of C6PcH2, and the microphase separation of P3HT and C6PcH2 in the active layer. 相似文献
6.
We report the plasmon-enhanced polymer bulk-heterojunction solar cells with Ag nanoparticles (AgNPs) obtained via chemical method. Here, the AgNPs films with different particle densities are introduced between the poly (3,4-ethylene dioxythiophene) poly (styrenesulfonate) (PEDOT: PSS) buffer layer and the poly (3-hexythiophene):[6,6]-phenyl-c61 butyric acid methyl ester (P3HT: PCBM) layer. By improving the optical absorption of the active layer owing to the localized surface plasmons, the power conversion efficiency of the solar cells is increased compared with the control device. It is shown that the efficiency of the device increases with the density of AgNPs. For the device employing higher density, the resulted power conversion efficiency is found to increase from 2.89% to 3.38%, enhanced by 16.96%. 相似文献
7.
《Organic Electronics》2014,15(2):549-562
Organic photovoltaics (OPVs) have acquired huge attention over the past years as potential renewable energy sources, adding attractive features such as aesthetics, semi-transparency, flexibility, large area printability, improved low-light performance, and cost-effectiveness to the well-known Si-based photovoltaics. Steady improvements in OPV power conversion efficiencies are continuously reported, notably for bulk heterojunction solar cells based on conjugated polymer:fullerene blends. However, apart from efficiency and cost, the stability of organic solar cell devices is of particular concern. Among the different factors contributing to OPV instability, gradual loss of the optimum phase-separated nanomorphology of the photoactive layer blend is a critical parameter. In this paper, we present the results of ‘shelf-life’ accelerated lifetime tests performed for devices containing a range of functionalized poly(3-alkylthiophene) (P3AT) donor polymers upon prolonged thermal stress. By the incorporation of functional moieties on the side chains of P3HT-based copolymers, a remarkable improvement of the intrinsic stability of the active layer blend morphology is accomplished, even for fairly low built-in ratios (5–15%) and without crosslinking to covalently anchor the polymer and/or fullerene molecules. Moreover, these alterations do not influence the initial power conversion efficiencies to a large extent. As such, the presented approach can be regarded as an attractive paradigm for OPV active layer stability. 相似文献
8.
9.
10.
《Organic Electronics》2008,9(5):582-590
Novel small-molecule bulk heterojunction photovoltaic (PV) cells consisting of oligothiophen (alpha-sexithiophen: 6T) and fullerene (C60) have been developed. Oligothiophen is well known as a good hole-transport material, and by changing the number of thiophen rings and making chemical modifications or substitutions, its characteristics relevant to PV applications (such as carrier mobility, energy level, packing, and ordered structure) can be controlled. Thus far it has been difficult to fabricate films of oligothiophene--fullerene blends with suitable morphology by using the common co-evaporation method, because oligothiophene crystallizes easily during film deposition. The present study found that the morphology of 6T:C60 blends strongly depending on the composition of 6T:C60. Suitable morphology was obtained only for films deposited with the co-evaporation of excess C60. It is likely that excess C60 prevents the crystallization of 6T. By successfully controlling the film morphology, we were able to demonstrate good PV performance in oligothiophene:fullerene bulk heterojunction PV cells for the first time. Moreover, it was found that PV performance could be further improved by inserting a C60 layer between the blend layer and exciton blocking layer. 相似文献
11.
12.
A combination of fast scanning chip calorimetry and X-ray ptychography is explored to study the effects of thermal annealing on the active layer of bulk heterojunction organic photovoltaics. The well-known P3HT/PC61BM 1:1 system is investigated as a test case. By using a custom chip calorimetry setup, it is possible to give a thermal treatment at 127 °C (400 K) to P3HT/PC61BM 1:1 thin layers, using a heating and cooling rate of 30000 K s−1, after which the resulting morphology is investigated with X-ray ptychography. Applying only heating and cooling, without isothermal annealing, yields a featureless morphology. This corresponds well with thermal data which indicate a mixed amorphous phase only. For increasing isothermal annealing times, a well-defined morphology appears with increasing domain size, corresponding to the formation of an endothermal melting trajectory. This melting trajectory is expected to consist of both eutectic melting and melting of coarsened crystals. In contrast to chip calorimetry results, large domain sizes are obtained for heating and cooling without isothermal annealing at a conventional rate of 20 K min−1. This initial morphology then develops further with increased isothermal annealing. The combination of chip calorimetry and ptychography allows separating the effects of each single thermal step on morphology development. 相似文献
13.
Performance improvement of low bandgap polymer bulk heterojunction solar cells by incorporating P3HT
Rui Lin Matthew WrightKah Howe Chan Binesh Puthen-VeettilRui Sheng Xiaoming WenAshraf Uddin 《Organic Electronics》2014,15(11):2837-2846
This work demonstrates a significant improvement of device performance by incorporating the polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) into a low bandgap polymer poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2-ethylhexyl)-4H-cyclopenta [2,1-b:3,4-b′]dithiophene-siloe 2,6-diyl]] (Si-PCPDTBT) and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) host system, to form a ternary blend bulk heterojunction solar cell. The P3HT concentration was varied from 1 to 5 wt% in the host system. P3HT functions as a morphology control agent in this ternary system. A small weight percentage of P3HT can enhance the light absorption, polymer phase separation, exciton separation and charge carrier mobilities. These results are supported by UV–vis spectroscopy, X-ray diffraction, photoluminescence analysis and other characterisation methods. The highest average power conversion efficiency improvement of 10% was achieved by adding 1 wt% P3HT to the host system. This study reveals a promising way to achieve high efficiency solar cells using a low bandgap polymer. 相似文献
14.
Bulk heterojunction solar cells based on a blend of poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM), were studied. The organic photoactive layers were spin coated onto a poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT-PSS) interfacial layer at speeds of 600 and 2000 rpm. The molecular structure of PCDTBT, PC71BM, and the PCDTBT:PC71BM blend was investigated using Fourier-transform IR (FTIR) spectroscopy, which confirmed the absence of interactions between the individual components of the composite. The dielectric properties of PCDTBT:PC71BM-based solar cells were studied under illumination by means of impedance analysis. The dielectric constant, impedance, and ac conductance were analyzed as a function of frequency at different bias voltages close to the open circuit voltage (Voc). We found that the dielectric constant, dielectric loss, and conductance increased with increasing PCDTBT:PC71BM thickness. Impedance spectroscopy analysis revealed decreases in charge recombination and the resistance of the whole device with increasing spin coating speed for the active layer. Moreover, an increase in recombination resistance for the solar cells was observed close to VOC. 相似文献
15.
The improvement of near infrared wavelength sensitivity in the bulk heterojunction organic polymer solar cell based on poly (3-hexylthiophene) (P3HT) and PC70BM, by the addition of soluble DPP-CN small molecule is reported. By incorporating DPP-CN, the photosensitivity in the longer wavelength region was improved and the power conversion efficiency (PCE) has been reached to 4.37% as compared to 3.23% for the device based on P3HT:PC70BM blend. The increase in the PCE is attributed to the increase in light harvesting property of the blend and efficient dissociation of excitons into free charge carriers due to the increased number of D–A sites. The PCE has been further enhanced to 4.70%, when mixed solvent cast P3HT:DPP-CN:PC70BM blend is used as photoactive layer. The optical absorption spectra of the blend showed that the blend film cast from mixed solvent broadened the absorption wavelength range. This occurred as result of a large red shift of P3HT absorption peak and same time a widening and small red shift of DPP-CN absorption peak in the blend film. The improved light harvesting property of thermally annealed film is considered to the factor responsible for the improvement in the PCE. 相似文献
16.
[6,6]-Phenyl-C61-butyric acid-4′-hydroxyl-azobenzene ester (PCBAb) was synthesized and used as the acceptor in the fabrication of reversible UV–VIS response bi-state polymer solar cells (PSCs) based on the photoinduced cis–trans isomerization of PCBAb. The device can be switched between “active” and “sleep” by the irradiation of UV and visible light, respectively. The active device has a PCE of 2.0%. With UV irradiation, the device goes to “sleep” with a lowered PCE (0.4%), and simultaneously decreased Jsc, Voc and FF, while after visible light treatment, the device is made “active” again. The mechanism of the bi-state process involves the different electron mobilities of the isomers. 相似文献
17.
Chang-Qi MA 《中国光电子学前沿》2011,(1)
This mini-review summarizes the recent achievements of developing conjugated dendritic oligothiophenes (DOT) for use in solution-processed bulk heterojunction (BHJ) solar cells. These DOTs are structurally defined molecules with relatively high molecular weight. Therefore, this novel class of thiophene based material possesses not only some advantages of oligomers,such as defined and monodispersed molecular structure,high chemical purity, but also some characteristics of polymers, for example, good solution-processability.In addition, the step-by-step approach of its synthesis allows precise fimctionalization of dendritic backbones with desired moieties, which is helpful to finely tune the optical and electronic properties of materials. Power conversion efficiencies (PCE) of BHJ solar cells were achieved up to 2.5% when functionalized thiophene dendrimers were used as electron donor and electron acceptor was a fullerene derivative. These results indicated that dendritic oligothiophenes are a novel class of the materials of electron donor for solution-processed organic solar cells. 相似文献
18.
Jung Hwa SeoSun Young Nam Kwang-Sup Lee Tae-Dong KimShinuk Cho 《Organic Electronics》2012,13(4):570-578
The effects of processing additive on fullerene aggregation in polymer BHJ solar cells were investigated using new fullerene derivatives bearing a thiophene moiety and alkyl groups. Although new fullerene derivatives showed quite similar electronic transport properties in field-effect transistors, the photovoltaic performances were significantly limited by their aggregative nature. Processing with 1% CN additive, however, changed the aggregated morphology of BHJ films to a smoother and homogeneous morphology, improving photovoltaic performance. The result indicates that processing additive not only influences on polymer side, but also significantly affects fullerene acceptor component. 相似文献
19.
《光电子快报》2008,4(4)
Organic solar cells with stacked bulk heterojunction(BHJ) are investigated based on conjugated polymer.By using the solution spin-coating method,Poly [2-methoxy,5-(2' -ethyl-hexyloxy) -1,4-phenylene vinylene](MEH-PPV) and ZnO nanoparticles(50 nm) are mixed as the optical sense layer.Ag is used as inter-layer to connect the upper BHJ cell and the lower cell.The structures are ITO/PEDOT:PSS/MEH-PPV /Ag / MEH-PPV:ZnO /Al.The open circuit voltage(VOC) of a stacked cell is about 3.7 times of that of an individual organic solar cell(ITO/PEDOT:PSS/MEH-PPV /Al).The short circuit current(JSC) of a stacked cell is increased by about 1.6 times of that of individual one. 相似文献
20.
Xin-fang Zhang Zheng Xu Su-ling Zhao Fu-jun Zhang Yan Li Chun-yu Wu Yue-ning Chen 《光电子快报》2008,4(4):257-259
Organic solar cells with stacked bulk heterojutaction(BHJ) are investigated based on conjugated polymer. By using the solution spin-coating method, Poly[2-methoxy, 5-(2' -ethyl-hexyloxy) -1,4-phenylene vinylene] (MEH-PPV) and ZnO nanoparticles (50 nm) are mixed as the optical sense layer. Ag is used as inter-layer to connect the upper BHJ cell and the lower cell. The structures are ITO/PEDOT:PSS/MEH-PPV lAg / MEH-PPV:ZnO/Al. The open circuit voltage (Voc) of a stacked cell is about 3.7 times of that of an individual organic solar cell (ITO/PEDOT:PSS/MEH-PPV/Al). The short circuit current (Jsc) of a stacked cell is increased by about 1.6 times of that of individual one. 相似文献