首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用真空热压烧结方法制备Al2O3/Ti(C,N)-Ni-Ti陶瓷基复合材料,采用X射线衍射与扫描电镜分析材料的物相组成和显微结构,研究烧结工艺对材料物相组成、显微结构和力学性能的影响。结果表明:Ni和Ti的添加显著提高复合材料的强度和韧性;温度小于1 600℃时,复合材料的力学性能随热压温度的升高而升高;温度高于1 600℃时,温度升高及保温时间延长不仅会导致Al2O3晶粒的异常长大和Ti(C,N)的分解,而且会使Ni发生聚集现象,复合材料的力学性能下降;当烧结温度为1 600℃、保温时间为30 min时,制备的Al2O3/Ti(C,N)-Ni-Ti陶瓷复合材料的力学性能最佳,其相对密度达到99.4%,抗弯强度为820 MPa,断裂韧性达到9.3 MPa.m1/2。  相似文献   

2.
在微米Si3N4基体中加入纳米Si3N4及TiC颗粒,以Al2O3和Y2O3作为助烧结剂,通过热压烧结制备了Si3N4/TiC纳米复合陶瓷材料.结果表明通过添加分散剂和利用超声分散,调节pH值得到分散良好的混合粉料;加入纳米TiC及Si3N4颗粒可明显细化晶粒,促进基体材料双峰结构的形成,提高复合材料的致密度和力学性能;含10ω/%Si3N4和15ω/%TiC纳米颗粒时复合陶瓷材料具有最佳的抗弯强度和断裂韧性,分别得到峰值1010 MPa和7.5 M Pa·m1/2,硬度HV达到15.65 GPa.采用SEM和TEM等手段分析了材料的微观结构.  相似文献   

3.
可加工性BN/Al2O3陶瓷基复合材料的制备   总被引:2,自引:0,他引:2  
利用气相化学反应, 以H3BO3和CO(NH2)2作为BN源, 将纳米BN包覆到Al2O3颗粒表面, 经热压烧结制备出高强韧可加工BN/Al2O3复合材料. 材料的三点弯曲强度随BN含量的增加而缓慢降低, BN体积分数为30% 时, 仍达到446MPa; 断裂韧性随BN含量的增加而得到显著改善, 较单相氧化铝陶瓷提高近一倍. BN体积分数大于20%时, 该复合材料可用WC钻头在普通台式钻床上钻孔, 在小的轴向压力(10N)下, 钻孔速率大于1mm/min, 钻孔边缘平整, 没有崩裂现象, 内壁光滑, 粗糙度RZ =(6±0.5)μm. SEM观察显示, 加工未带来明显的损伤. 材料优异的力学性能及可加工性源自于基质中均匀分布的细小h-BN的颗粒增韧机制及其易解理的层状结构特点.  相似文献   

4.
采用热压烧结致密化工艺,在1550,1600,1650℃3个不同的烧结温度下,烧结制备了Si3N4含量从O.25w%到6w%的A1203/Si,N。纳米复相陶瓷。对所制备的试样进行了密度、硬度、断裂韧性的测试。实验结果表明,所有试样达到了较高的致密度,且致密度随烧结温度的升高而增加。硬度在Si3N。含量为0.75w%和3w%时达到峰值。韧性在Si3N4含量3w%达到峰值。材料的性能较纯A120,陶瓷有较大幅度提高。  相似文献   

5.
用热压烧结法制备了纳米Fe3 Al粒子增强Al2 O3 基复合材料。研究了 14 5 0~ 16 0 0℃不同烧结温度下纳米Fe3 Al的加入量与材料的致密度、力学性能及显微结构的关系。结果表明 :纳米Fe3 Al的加入可使Al2 O3 晶粒的生长受到抑制 ,使复合材料的烧结温度提高。Fe3 Al/Al2 O3 纳米复合材料有良好的力学性能 ,其抗弯强度最高可达832MPa ,断裂韧性最高可达 7.96MPa·m1/ 2 。  相似文献   

6.
利用原位反应热压工艺制备了B4C/Al2O3基复合陶瓷,研究了TiB2含量和烧结温度对B4C/Al2O3基复合陶瓷力学性能和微观结构的影响.结果表明,当TiB2含量低于8.7%时,随原位反应生成的TiB2含量的增加,有效的促进了B4C/Al2O3/TiB2复合陶瓷的烧结,提高相对密度,改善了力学性能.当烧结温度低于1900℃时,其力学性能随烧结温度增加而提高;当超过1900℃时,其力学性能随烧结温度的提高而降低.在1900℃,60 min时,B4C/Al2O3/TiB2复合陶瓷获得最佳综合力学性能,其硬度、断裂韧性和抗弯强度分别为24.8 GPa、4.82 MPa·m1/2和445.2 MPa.  相似文献   

7.
Fe3Ai纳米粒子增强A12O3陶瓷的制备及性能   总被引:1,自引:1,他引:1  
《中国有色金属学报》2003,13(1):188-192
用热压烧结法制备了纳米Fe3Al粒子增强Al2O3基复合材料.研究了1 450~1 600 ℃不同烧结温度下纳米Fe3Al的加入量与材料的致密度、力学性能及显微结构的关系.结果表明纳米Fe3Al的加入可使Al2O3晶粒的生长受到抑制, 使复合材料的烧结温度提高.Fe3Al/Al2O3纳米复合材料有良好的力学性能, 其抗弯强度最高可达832 MPa, 断裂韧性最高可达7.96 MPa*m1/2.  相似文献   

8.
李潜  瞿海霞  狄平  朱世根 《热加工工艺》2012,41(24):140-144
以高能球磨法制备的WC与无定形Al2O3复合粉末为原料,研究烧结温度对WC-Al2O3复合材料组织和力学性能的影响,采用XRD和SEM对粉末及烧结试样的结构特征进行表征.结果表明:烧结温度为1640℃保温90 min时,材料致密度达98.77%,此温度下材料的粒径异常长大,WC达到4.35 μm,Al2O3达到3.47 μm;烧结温度为1540℃保温90 min后烧结试样密度达到97.98%,维氏硬度和断裂韧性分别为18.65GPa、10.43MPa.m1/2.  相似文献   

9.
可加工AlN-BN复合陶瓷的制备   总被引:1,自引:0,他引:1  
以碳热还原法合成的 AlN 粉末和市售 BN 粉末为原料,添加 5%Y2O3 为烧结助剂,利用无压烧结制备 AlN-15BN复合陶瓷,研究了烧结温度对 AlN-15BN 复合陶瓷相变、致密度、微观结构以及性能的影响,结果表明:Y2O3 可与 AlN粉末表面的 Al2O3 发生反应生成液相促进烧结,随着烧结温度的升高,复合陶瓷的致密度、热导率和硬度逐渐增加,片状的 BN 形成的卡片房式结构会阻碍复合陶瓷的收缩和致密。在 1 850℃烧结 3 h,可以制备出相对密度为 86.4%,热导率为104.6 W?m-1?K-1,硬度为 HRA56.2的 AlN-15BN复合陶瓷。研究表明,通过添加加工性能良好的 BN制备可加 AIN-BN复合陶瓷,是解决 AIB 陶瓷复杂形状成形问题的一个重要途径。  相似文献   

10.
基于非均匀成核法制备ZrB2/B4C陶瓷复合材料   总被引:1,自引:0,他引:1  
以ZrOCl2·8H2O和B4C为主要原料,采用非均匀成核法、原位生成和无压烧结技术制备出ZrB2/B4C陶瓷复合材料.重点探讨了烧结温度对ZrB2/B4C陶瓷复合材料组织结构和性能的影响.结果表明,随着烧结温度的升高,ZrB2/B4C陶瓷复合材料的密度和硬度均为先升高后降低.材料的最佳烧结温度为2060 ℃,烧结时间为0.5 h.在最佳烧结工艺条件下,ZrB2/B4C陶瓷复合材料的相对密度、硬度和断裂韧性分别为96% T.D,42.3 GPa和4.7 MPa·m1/2.  相似文献   

11.
在采用溶胶-凝胶法引入添加剂制备SiC/(Al2O3+Y2O3)复合粉体的基础上,研究了复合粉体的烧结行为、力学性能、YAG分布及相组成.结果表明,溶胶-凝胶法制备的复合材料中YAG相分散均匀、反应完全、烧结致密化温度较低,具有较高的强度和相对体积质量.在1 950℃下真空无压烧结40 min,SiC/YAG陶瓷相对密度为96.8%,抗弯强度为356 MPa,硬度为23 GPa,断裂韧性为4.5 MPa·m1/2.材料的析晶完整,晶体尺寸在0.5 μm~2 μm,呈等柱状,断裂方式为沿晶断裂.  相似文献   

12.
常压烧结制备了Al2O3和20wt%ZrB2/Al2O3复合陶瓷,用XRD和金相显微镜、SEM分析了其相组成、微观结构、断裂形貌,并用压痕法计算了陶瓷的断裂韧性。结果表明:Al2O3陶瓷自1500℃开始其相对密度超过99%,维氏硬度达到1897HV,断裂韧性为5.2?.3MNm-3/2;20wt%ZrB2/Al2O3复合陶瓷在1450℃时相对密度超过98%,维氏硬度达到1807HV,断裂韧性为6.7?.2MNm-3/2。微观形貌观察表明,ZrB2/Al2O3复合陶瓷韧性的增加是由于弥散分布的ZrB2在Al2O3陶瓷基体中起到遏制裂纹扩展和钉扎双重作用的结果。  相似文献   

13.
对压力浸渗制备的Si3N4p/Al复合材料在800-950℃下进行热处理,测试复合材料的相组成、弯曲强度、硬度和断裂韧度变化,观察复合材料断裂特征。结果表明,850℃是一个重要的热处理温度点,在此温度下-βSi3N4和Al开始发生显著的界面反应;对Si3N4p/Al复合材料进行850℃以上热处理可以提高复合材料的硬度、强度,但断裂韧度有所下降;950℃热处理的45vol%Si3N4p/Al复合材料弯曲强度达到498MPa,硬度达到373HBS5/750,断裂韧度为7MPa.m^1/2,具有良好的强韧性配合;复合材料断裂以Si3N4陶瓷颗粒脆性解理和铝合金塑性撕裂两种形式为主,少有陶瓷颗粒/铝基体界面解离的情形。  相似文献   

14.
以TiCl4溶液和B4C粉末为主要原料,采用共沉淀、原位合成无压烧结技术制备了TiB2/B4C陶瓷复合材料.研究了原料配比、烧结温度对TiB2/B4C陶瓷复合材料的烧结性能、显微组织和力学性能的影响.通过X射线衍射、金相显微镜、扫描电镜等分析手段,分析了TiB2/B4C陶瓷复合材料的物相组成、显微组织和断裂特征.研究结果表明:当成分质量配比TiB2∶B4C为40∶60时,材料最大相对密度为98.5%T.D;在最佳成分配比下,随着烧结温度的升高,原位合成制备的TiB2/B4C陶瓷复合材料的密度、硬度、抗弯强度均为先升高后降低,材料的最佳烧结工艺为2050℃,1 h.在最佳烧结工艺下,TiB2/B4C陶瓷复合材料的密度、硬度、抗弯强度和断裂韧性达到最佳值分别为3.17 g/cm3,31.5GPa,381 MPa和5.1 MPa·m1/2.  相似文献   

15.
在烧结温度和压力为1800 ℃和30 MPa条件下热压烧结制备ZrB2-20%(体积分数, 下同)SiCw陶瓷复合材料,并研究两种不同SiC晶须对材料的显微组织与力学性能的影响.结果表明,复合材料的弯曲强度和断裂韧性与SiC晶须的长径比有关,长径比越大材料的性能越好,弯曲强度和断裂韧性最高为651 MPa和5.97 MPa·m1/2;与单相的ZrB2材料及SiC颗粒增强ZrB2复合材料相比,断裂韧性有显著提高;其主要增韧机制为裂纹偏转、晶须桥连和拔出.  相似文献   

16.
微波烧结ZrO_(2(n))/Al_2O_3复合陶瓷工艺与组织   总被引:1,自引:0,他引:1  
以纳米ZrO2、微米Al2O3为原料,采用微波烧结方式制备ZrO2/Al2O3复相陶瓷。探讨了烧结温度和保温时间对试样线收缩率、相对体积密度、硬度和断裂韧性的影响。结果表明,烧结温度1550℃,保温时间10 min,可得到较高的硬度(13 350 MPa)和较好的断裂韧度(6.41 MPa.m1/2),烧结过程中发生了m-ZrO2转变为t-ZrO2相变,nano-ZrO2的加入使Al2O3形成內晶型结构;试样的断裂方式为沿晶断裂和穿晶断裂并存;ZrO/AlO复合陶瓷主要通过应力诱导相变和内晶型结构进行增韧。  相似文献   

17.
热压烧结化学镀法获得的Al2O3-Co TiC-Co复合粉体制备超韧Al2O3-TiC-Co复合陶瓷.探讨了烧结温度、烧结气氛和分级保温时间对复合陶瓷微观形貌和力学性能的影响.结果表明,烧结温度为1550℃、真空保护并在750℃和1200℃各保温10 min制备的复合陶瓷力学性能最佳.采用最佳烧结工艺制备的Al2O3-TiC-8%Co复合陶瓷的平均抗弯强度和断裂韧性分别达到782MPa和8.0 MPa·m1/2.  相似文献   

18.
用共沉淀-水热法制备Ni/ZrO2/Al2O3复相陶瓷粉体,并对烧结体的力学性能和显微形貌进行了讨论.复相粉体的表征采用高分辩透射电镜(HRTEM)和X射线衍射(XRD)等技术.结果表明:在1.4-丁二醇介质中300℃水热条件下自生压高压釜中反应12h成功制备了Ni/ZrO2/Al2O3复合陶瓷粉体,并且测得复相陶瓷体积密度和断裂韧性.通过场发射扫描电镜观察得到烧结体中t-ZrO2颗粒和Ni颗粒的平均尺寸.  相似文献   

19.
Al2O3颗粒对LiTaO3烧结性的影响   总被引:2,自引:0,他引:2  
采用氮气保护热压烧结工艺制备纯LiTaO3压电陶瓷和Al2O3/LiTaO3(简称ALT)陶瓷复合材料,Al2O3p的体积分数(%)分别为0,5,10,15,20.加入少量Al2O3p后,LiTaO3致密度显著提高,ALT陶瓷复合材料的致密度均在99.5%以上.反之,LiTaO3p的加入也能明显提高Al2O3的烧结致密度,而且能够显著降低Al2O3的烧结温度.XRD衍射结果表明,该复合材料中只有LiTaO3和Al2O3两相,无反应产物,说明经过1300℃热压烧结,Al2O3p和LiTaO3稳定共存,两者的化学相容性较好.SEM,TEM观察表明,Al2O3p弥散地分布于LiTaO3颗粒的晶界上,两者结合紧密,且材料内部不存在微裂纹,说明两者的热物理相容性也较好.在这个材料体系中,LiTaO3和Al2O3有很好的相容性.  相似文献   

20.
采用热压烧结工艺制备出HfB2—20%SiC(HS)、HfB2-20%SIC-5%Si3N4(HSS)和HfB2—20%SIC-5%AIN(HSA)(体积分数,下同)3种超高温陶瓷基复合材料,对材料进行了微结构表征和力学性能测试,并对Si3N4、AIN烧结助剂的作用机理进行了初步分析。结果表明,与HfB2—20%SIC相比,Si3N4和AIN烧结助剂的引入使材料的烧结温度从2200℃降低到1850℃,相对密度从95%提高到99%左右。材料的平均晶粒尺寸显著降低,形成了相应的晶粒边界相。力学性能测试结果表明,HfB2—20%SiC-5%Si3N4和HfB2—20%SiC-5%AIN的抗弯强度和断裂韧性均比HfB2—20%SiC获得一定程度的提高。烧结助剂的引入使SiC/HfB2超高温陶瓷材料的断裂模式从单纯的穿晶断裂转变为穿晶/沿晶混合的断裂模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号