首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Organic Electronics》2007,8(6):683-689
White organic light-emitting diodes (WOLEDs) with four wavelengths were fabricated by using three doped layers, which were obtained by separating recombination zones into three emitter layers. Among these emitters, blue emissions with two wavelengths (456 and 487 nm) were occurred in the 4,4′-bis(carbazoyl-(9))-stilbene (BCS) host doped with a perylene dye. Also, a green emission was originated from the tris(8-quinolinolato)aluminum (III) (Alq3) host doped with a green fluorescent of 10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1]benzopyrano [6,7,8-ij]-quinolizin-11-one (C545T) dye. Finally, an orange emission was obtained from the N,N′-bis(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB) host doped with a 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) dye. The white light could be emitted by simultaneously controlling the emitter thickness and concentration of fluorescent dyes in each emissive layer, resulting in partial excitations among those three emitter layers. Electroluminescent spectra of the device obtained in this study were not sensitive to driving voltage of the device. Also, the maximum luminance for the white OLED with the CIE coordinate of (0.34, 0.34) was 56,300 cd/m2 at the applied bias voltage of 11.6 V. Also, its external quantum and the power efficiency at about 100 cd/m2 were 1.68% and 2.41 lm/W, respectively.  相似文献   

2.
《Organic Electronics》2008,9(2):273-278
The authors demonstrate a fluorescent white organic light-emitting device (WOLED) with double emissive layers. The yellow and blue dyes, 5,6,11,12-tetraphenylnaphthacene and N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl)vinyl)phenyl)-N-phenylbenzenamine, are doping into the same conductive host material, N,N′-dicarbazolyl-4-4′-biphenyl). The maximum luminance and power efficiency of the WOLED are 14.6 cd/A and 9.5 lm/W at 0.01 mA/cm2, with the maximum brightness of 20 100 cd/m2 at 17.8 V. The Commission International de L’Éclairage coordinates change slightly from (0.27, 0.37) to (0.28, 0.36), as the applied voltage increases from 6 V to 16 V. The high efficiencies can be attributed to the balance between holes and electrons.  相似文献   

3.
《Organic Electronics》2007,8(6):735-742
Efficient fluorescent white organic light-emitting diodes with low carrier-injection barriers were fabricated with device structure of indium tin oxide/N,N′-bis-(1-naphthy)-N,N′-diphenyl-1,1′-biphenyl-4-4′-diamine/white emission layer/1,3,5-tris(N-phenyl-benzimidazol-2-yl)benzene/lithium fluoride/aluminium. By blending in the blue host of 1-butyl-9,10-naphthalene-anthracene in the emissive layer an efficient electro-luminescent greenish-blue co-host of di(triphenyl-amine)-1,4-divinyl-naphthalene, with the doping of a trace amount of red dye of 4-(dicyano-methylene)-2-methyl-6-(julolidin-4-yl-vinyl)-4H-pyran, bright and colour-stable white emission with high power-efficiency of 14.6 lm/W at 100 cd/m2 or current efficiency of 19.2 cd/A at 300 cd/m2 or 18.7 cd/A at 10,000 cd/m2 was obtained. The resulted synergistic increase in brightness and efficiency may be attributed to the presence of cascading new routes with comparatively lower electron injection barrier.  相似文献   

4.
《Organic Electronics》2008,9(5):692-698
We demonstrate one high-efficiency blue fluorescent material, N-(4-((E)-2-(6-((E)-4-(diphenylamino)styryl)naphthalen-2-yl)vinyl)phenyl)-N-phenylbenzenamine, with an emissive peak of 472 nm and the hole-transporting property speculated from different devices. It can function either as the single emissive layer or as the dye doped in N,N′-dicarbazolyl-4-4′-biphenyl (CBP). The former shows a maximum current efficiency and luminance of 7.06 cd/A (0.04 mA/cm2) and 16 930 cd/m2, in contrast to 11.5 cd/A (4.35 mA/cm2) and 25 690 cd/m2 for the latter. The better performance of the latter can be attributed to the bipolar carrier transport property of CBP and the hole-blocking and electron-transporting characteristic of 4,7-diphenyl-1,10-phenanthroline (BPhen), which resulting in a good balance of holes and electrons. Moreover, the Commission Internationale De L’Eclairage coordinates of the latter change slightly from (0.162, 0.3) to (0.148, 0.268) upon increasing the voltage from 3 V to 14 V.  相似文献   

5.
Efficient red, orange, green and blue monochrome phosphorescent organic light-emitting diodes (OLEDs) with simplified structure were fabricated based on ultrathin emissive layers. The maximum efficiencies of red, orange, green and blue OLEDs are 19.3 cd/A (17.3 lm/W), 45.7 cd/A (43.2 lm/W), 46.3 cd/A (41.6 lm/W) and 11.9 cd/A (9.2 lm/W). Moreover, efficient and color stable white OLEDs based on two complementary colors of orange/blue, three colors of red/orange/blue, and four colors of red/orange/green/blue were demonstrated. The two colors, three colors and four colors white OLEDs have maximum efficiencies of 30.9 cd/A (27.7 lm/W), 30.3 cd/A (27.2 lm/W) and 28.9 cd/A (26.0 lm/W), respectively. And we also discussed the emission mechanism of the designed monochrome and white devices.  相似文献   

6.
《Organic Electronics》2014,15(7):1401-1406
Efficient solution-processed blue phosphorescent organic light-emitting diodes (OLEDs) featuring with halogen-free solvent processing are fabricated in this study. The organic molecule 3,6-bis(diphenylphosphoryl)-9-(4′-(diphenylphosphoryl) phenyl)-carbazole (TPCz) that possesses good solubility in halogen-free polar solvents is selected to serve as the host of blue phosphorescent iridium(III) [bis(4,6-difluorophenyl)-pyridinato-N,C2]-picolinate (FIrpic) dopant. The morphology of the TPCz:FIrpic emissive layer prepared with different polar solvents including chlorobenzene (CB), n-butanol (ButA) and isopropanol (IPA) and the effect on their electroluminescent performance have been investigated in detail. It is found that the more polar halogen-free solvent IPA restrains the FIrpic aggregation and renders a more densely packed emissive layer as compared to the CB-processed counterpart, which results in the enhanced electroluminescent performance. The luminous efficiency and power efficiency of the blue phosphorescent OLEDs prepared with CB are merely 5.7 cd/A and 3.3 lm/W, respectively. When using more polar halogen-free solvent IPA, the efficiencies are enhanced to 22.3 cd/A and 15.6 lm/W, about 2.9 and 3.7-time increment, respectively. This work provides an approach to fabricate efficient solution-processed phosphorescent OLEDs with environmental-friendly solvents, which is highly required in large-scale solution-processed manufacturing.  相似文献   

7.
Blue and white small-molecule organic light-emitting diodes are fabricated by multi-layer blade coating on hot plate at 80 °C with hot wind. Uniform multi-layer structures are made without dissolution due to rapid drying. Only small molecules originally developed for vacuum deposition are used. For hole transport layer of, 4′,4″-tris(carbazol-9-yl)triphenylamine (TCTA), electron transport layer of 2,2′,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TBPI), emissive layer host of, 6-bis(3-(9H-carbazol-9-yl)phenyl)pyridine (26DCzPPy), triplet emitters of bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium(III) (FIrpic), and cathode of LiF/Al, the peak current efficiency for blue emission is 25.1 cd/A (10.8% and 9.3 lm/W). Orange emitter iridium(III)bis (4-(4-t-butylphenyl) thieno[3,2-c]pyridinato-N,C2′)acetylacetonate (PO-01-TB) is added to obtain white emission with CIE coordinate of (0.39, 0.46) [1]. The current efficiency is 34.2 cd/A (11.6% and 12 lm/W) at maximum, 32.4 cd/A at 1000 cd/m2, and 31 cd/A at 10,000 cd/m2.  相似文献   

8.
In this paper, we report color stable phosphorescent white organic light-emitting diodes (OLEDs) based on a double emissive layer (EML) structure composed of blue and red/green phosphorescent units. Deep hole trapping situation of red and green dopants at the red/green EML could induce less voltage dependent white spectral characteristics by restricting the change of exciton generation zone. A wide band-gap host material, 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy), was used for achieving such deep-trap generation. Fabricated phosphorescent white OLED shows a slight color coordinate change of (?0.002, +0.002) from 1000 cd/m2 to 5000 cd/m2 with power efficiency of 38.7 lm/W and current efficiency of 46.4 cd/A at 1000 cd/m2. In addition, negligible color changes were observed by delaying red dopant saturation time using optimum red dopant concentration.  相似文献   

9.
《Organic Electronics》2007,8(4):305-310
High brightness and efficient white stacked organic light-emitting diodes have been fabricated by connecting individual blue and red emissive units with the anode–cathode layer (ACL) consisting of LiF (1 nm)/Ca (25 nm)/Ag (15 nm). Use 1,3-bis(carbazol-9-yl)benzene (mCP):bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (FirPic) as the blue emitter and tris(8-hydroxy-quinolinato)aluminium (Alq3):4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) as the red emitter, white light emission with CIE coordinates of (0.32, 0.38) was obtained at a driving voltage of 26 V with a luminance of 40,000 cd/m2. By replacing the red fluorescent emitter with a phosphorescent one, the color coordinates were improved to (0.33, 0.31). The peak external quantum efficiency was enhanced from 5.3% (at 28.2 mA/cm2) to 10.5% (at 1.4 mA/cm2) as well.  相似文献   

10.
We have prepared efficient red organic light-emitting diodes (OLEDs) incorporating 2,7-bis(diphenylphosphoryl)-9-[4-(N,N-diphenylamino)phenyl]-9-phenylfluorene (POAPF) as the host material doped with the osmium phosphor Os(fptz)2(PPh2Me)2 (fptz = 3-trifluoromethyl-5-pyridyl-1,2,4-triazole). POAPF, which possesses bipolar functionalities, can facilitate both hole- and electron-injection from the charge transport layers to provide a balanced charge flux within the emission layer. The peak electroluminescence performance of the device reached as high as 19.9% and 34.5 lm/W – the highest values reported to date for a red phosphorescent OLED. In addition, we fabricated a POAPF-based white light OLED – containing red-[doped with Os(fptz)2(PPh2Me)2] and blue-emitting {doped with iridium(III) bis[(4,6-difluorophenyl)pyridinato-N,C2′] picolinate, FIrpic} layers – that also exhibited satisfactory efficiencies (18.4% and 43.9 lm/W).  相似文献   

11.
We demonstrate simplified doping-free orange phosphorescent organic light-emitting diodes (OLEDs) based on ultrathin emission layer. The optimized orange device has the maximum current efficiency of 52.1 cd/A and power efficiency of 36.3 lm/W, respectively. Efficient simplified doping-free white OLEDs employing blue and orange ultrathin emission layers have excellent color stability, which is attributed to the avoidance of the movement of charges recombination zone and no differential color aging. One white device exhibits high efficiency of 33.6 cd/A (30.1 lm/W). Moreover, the emission mechanism of doping-free orange and white OLEDs is also discussed.  相似文献   

12.
The device characteristics of blue phosphorescent organic light-emitting diodes (PHOLEDs) with mixed host structure were investigated by changing the combination and the composition of host materials in emissive layer. The distributed recombination zone and balanced charge carrier injection within emissive layer were achieved through mixed host optimization with a hole transport-type and an electron transport-type host materials, therefore the device performances were greatly enhanced, with external quantum and power efficiencies of 21.8% and 53 lm/W. Moreover, mixed host blue PHOLEDs exhibited a extremely low stable efficiency roll-off with quantum efficiencies of 20.3% and 18.6% at a luminance of 1000 and 10,000 cd/m2.  相似文献   

13.
《Organic Electronics》2008,9(3):339-346
Blue-emitting 2-methyl-9,10-di(2-napthyl)anthracene (MADN) and yellow-emitting 5,6,11,12-tetraphenylnaphthacene (rubrene) were used as cohost materials together with tris(8-hydroxyquinolinato)aluminum (Alq3) to form emission layers doped with the red dopant molecule 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB). DCJTB-doped red organic light-emitting diodes based on both cohost systems showed remarkable improvements in terms of efficiency compared to DCJTB-doped Alq3 single-host devices. With 2% DCJTB doping, the respective efficiencies of Alq3 single-host, Alq3 (60%)/rubrene (40%)-, and Alq3 (20%)/MADN (80%)-cohost devices were 1.79, 4.44 and 5.42 cd/A at 20 mA/cm2. Unlike Alq3/rubrene-cohost devices, which experienced substantial current-induced quenching, Alq3/MADN-cohost devices showed only a slight efficiency change at high current densities. At the luminance of 7680 cd/m2, which was the benchmark for a practical passive-matrix OLED array with 64 scan-lines, an aperture ratio of 50%, and a polarizer transmittance of 50%, the power efficiency of the 2% DCJTB Alq3/MADN-cohost device was 4.1 and 1.5 times better than that of Alq3 single-host and Alq3/rubrene-cohost devices, respectively. Moreover, the half-decay lifetime of the Alq3/MADN-cohost device, measured as 14,000 h at an initial luminance of 1000 cd/m2, was 4.4 and 1.9 times longer than the respective half-decay lifetimes of Alq3 single-host and Alq3/rubrene-cohost devices.  相似文献   

14.
In order to achieve low driving voltage, electrophosphorescent green organic light-emitting diodes (OLEDs) based on a host material with small energy gap between the lowest excited singlet state and the lowest excited triplet state (ΔEST) have been fabricated. 2-biphenyl-4,6-bis(12-phenylindolo[2,3-a] carbazole-11-yl)- 1,3,5-triazine (PIC–TRZ) with ΔEST of only 0.11 eV has been found to be bipolar and used as the host for green OLEDs based on tris(2-phenylpyridinato) iridium(III) (Ir(ppy)3). A very low onset voltage of 2.19 V is achieved in devices without p- or n-doping. Maximum current and power efficiencies are 68 cd/A and 60 lm/W, respectively, and no significant roll-off of current efficiency (58 cd/A at 1000 cd/m2 and 62 cd/A at 10,000 cd/m2) have been observed. The small roll-off is due to the improved charge balance and the wide charge recombination zone in the emissive layer.  相似文献   

15.
《Organic Electronics》2007,8(4):349-356
The new amorphous molecular material, 2,5-bis(4-triphenylsilanyl-phenyl)-[1,3,4]oxadiazole, that functions as good hole blocker as well as electron transporting layer in the phosphorescent devices. The obtained material forms homogeneous and stable amorphous film. The new synthesized showed the reversible cathodic reduction for hole blocking material and the low reduction potential for electron transporting material in organic electroluminescent (EL) devices. The fabricated devices exhibited high performance with high current efficiency and power efficiency of 45 cd/A and 17.7 lm/W in 10 mA/cm2, which is superior to the result of the device using BAlq (current efficiency: 31.5 cd/A and power efficiency: 13.5 lm/W in 10 mA/cm2) as well-known hole blocker. The ITO/DNTPD/α-NPD/6% Ir(ppy)3 doped CBP/2,5-bis(4-triphenylsilanyl-phenyl)-[1,3,4]oxadiazole as both hole blocking and electron transporting layer/Al device showed efficiency of 45 cd/A and maximum brightness of 3000 cd/m2 in 10 mA/cm2.  相似文献   

16.
Highly bright and efficient azure blue quantum dot-based light-emitting diodes (QD-LEDs) have been demonstrated by employing ZnCdSe core/multishell QDs as emitters and the crucial development we report here is the ability to dramatically enhance the efficiency and brightness through doping poly vinyl(N-carbazole) (PVK) in the emissive layer to balance the charge injection. The best device displays remarkable features like maximum luminance of 13,800 cd/m2, luminous efficiency of 6.41 cd/A, and external quantum efficiency (EQE) of 8.76%, without detectable red-shift and broadening in electroluminescence (EL) spectra with increasing voltage as well as good spectral matching between photoluminescence (PL) and EL. Such azure blue quantum-dot LEDs show a 140% increase in external quantum efficiency compared with QD-LEDs without PVK. More important, the peak efficiency of the QD-LEDs with PVK dopant is achieved at luminance of about 1000 cd/m2, and high efficiency (EQE > 8%) can be maintained with brightness ranging from 200 to 2400 cd/m2. There are two main aspects of the role of PVK in the proposed system. Firstly, the lower HOMO of PVK than (poly[9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine] (TFB) can reduce the potential barrier for 0.4 eV at the interface of QDs and hole transport layer which could result in higher hole injection efficiency along with good EQE as compared to TFB-only HTLs. Secondly, with PVK acting as buffer layer of TFB and QDs, the exciton energy transfer from the organic host to the QDs can be effectively improved.  相似文献   

17.
Using a 4,4′,4′′-tris(N-carbazolyl)-triphenylamine (TCTA) small molecule interlayer, we have fabricated efficient green phosphorescent organic light emitting devices by solution process. Significantly a low driving voltage of 3.0 V to reach a luminance of 1000 cd/m2 is reported in this device. The maximum current and power efficiency values of 27.2 cd/A and 17.8 lm/W with TCTA interlayer (thickness 30 nm) and 33.7 cd/A and 19.6 lm/W with 40 nm thick interlayer are demonstrated, respectively. Results reveal a way to fabricate the phosphorescent organic light emitting device using TCTA small molecule interlayer by solution process, promising for efficient and simple manufacturing.  相似文献   

18.
In this article we report on the performances of phosphorescent orange organic light-emitting diodes (OLEDs) having a high operational stability. The fabricated devices all consist of a “hybrid” structure, where the hole-injection layer was processed from solution, while the rest of the organic materials were deposited by vacuum thermal evaporation. A device stack having an emissive layer comprising a carbazole-based host TCzMe doped with the orange phosphor tris(2-phenylquinoline)iridium(III) [Ir(2-phq)3] shows improved efficiencies compared to a the same device with the standard N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine (NPB) as host material. External quantum efficiency (EQE) up to 7.4% and a power efficiency of 16 lm/W were demonstrated using TCzMe. Most importantly, the operational stability of the device was largely improved, resulting in extrapolated values reaching lifetimes well above 100,000 h at initial luminance of 1000 Cd/m2.  相似文献   

19.
Low color temperature (CT) lighting provides a warm and comfortable atmosphere and shows mild effect on melatonin suppression. A high-efficiency low CT organic light emitting diode can be easily fabricated by spin coating a single white emission layer. The resultant white device shows an external quantum efficiency (EQE) of 22.8% (34.9 lm/W) with CT 2860 K at 100 cd/m2, while is shown 18.8% (24.5 lm/W) at 1000 cd/m2. The high efficiency may be attributed to the use of electroluminescence efficient materials and the ambipolar-transport host. Besides, proper device architecture design enables excitons to form on the host and allows effective energy transfer from host to guest or from high triplet guest to low counterparts. By decreasing the doping concentration of blue dye in the white emission layer, the device exhibited an orange emission with a CT of 2280 K. An EQE improvement was observed for the device, whose EQE was 27.4% (38.8 lm/W) at 100 cd/m2 and 20.4% (24.6 lm/W) at 1000 cd/m2.  相似文献   

20.
Efficient orange phosphorescent organic light-emitting devices based on simplified structure with maximum efficiencies of 46.5 lm/W and 51.5 cd/A were reported. One device had extremely low efficiency roll-off with efficiencies of 50.6 cd/A, 45.0 cd/A and 39.2 cd/A at 1000 cd/m2, 5000 cd/m2 and 10,000 cd/m2 respectively. The reduced efficiency roll-off was attributed to more balanced carrier injection and broader recombination zone. The designed simplified white device showed much lower efficiency roll-off than the control one based on multiple emitting layers. The efficiency of simplified white device was 40.8 cd/A at 1000 cd/m2 with Commission Internationale de I’Eclairage coordinates of (0.39, 0.46).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号