首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了TB8钛合金在不同热处理条件下的组织转变规律,并通过剪切实验分析了显微组织差异对于该合金剪切行为的影响。结果表明,热处理条件会影响TB8钛合金的显微组织,也会影响剪切变形行为。随着固溶处理温度升高,合金的晶粒明显变大,析出物的形貌也发生变化,剪切变形变得困难。固溶处理之后的时效温度对合金的剪切变形行为也有显著影响,在840 ℃固溶处理1 h之后,如果接着进行450 ℃/8 h时效处理,合金剪切变形所需的驱动力会降低;如果把时效热处理的温度提高到550 ℃,甚至更高(保温时间不变),那么剪切变形就会发生穿晶断裂。根据剪切检测结果可知,合金经过840 ℃/1 h固溶处理接着再进行500 ℃/8 h的时效处理可以获得优异的剪切性能,而且具有合理的显微组织。  相似文献   

2.
研究了常规固溶+时效、双时效及固溶+预时效+时效处理对热加工态TB2钛合金显微组织及力学性能的影响。显微组织研究表明:通过增加低温预时效工艺,可以使经热处理后的TB2钛合金中析出的次生α相较经常规固溶+时效处理后的更加均匀、细小。力学性能分析表明:经常规固溶+时效处理后,TB2钛合金的塑性较好,但强度偏低;双时效处理可以提高TB2钛合金的强度,但塑性较差;固溶+预时效+时效处理后,TB2钛合金的强度与塑性匹配良好。进一步热处理工艺研究表明:经780℃×1 h/AC+350℃×6 h/AC+560℃×8 h/AC热处理后,TB2钛合金的强度与塑性达到最优匹配,抗拉强度为1 190 MPa,延伸率为14%。  相似文献   

3.
TB9合金属于亚稳型β钛合金,热处理强化效果明显,抗腐蚀性强、本文研究了固溶处理、固溶+时效处理对TB9合金力学性能和显微组织的影响,结果表明:经过800℃-900℃固溶处理后,TB9合金强度随固溶温度提高逐渐下降,塑性变化不明显;超过820℃固溶处理时,β晶粒尺寸迅速长大; 800℃-900℃固溶处理后对时效态TB9合金强度影响不明显;塑性随固溶温度上升明显下降,延伸率从15%降低到10%,面缩率从37.5%下降到20%以下;经过820℃/30min、WQ+520℃/8h、AC固溶时效处理后α相充分析出,合金性能稳定。  相似文献   

4.
以TB6钛合金作为试验的对象,在MXQ1400-30箱式气氛炉上进行不同固溶温度(700、760、820、880℃)、不同冷却方式(水冷或空冷)的固溶处理试验以及不同时效温度(480、510、540、570℃)的时效处理试验,通过观察试验后试样的显微组织,得到TB6钛合金固溶-时效处理后微观组织演变规律及最佳参数。结果表明:TB6钛合金在820℃固溶2 h空冷、510℃时效8 h空冷后得到的微观组织最佳。  相似文献   

5.
热处理工艺对TB2钛合金组织和性能的影响   总被引:1,自引:0,他引:1  
研究了不同热处理工艺对TB2钛合金板材显微组织和力学性能的影响。结果表明,该合金在730℃以上固溶处理已经开始再结晶,在730~820℃之间处理的样品强度和延伸率变化不大;在760℃固溶处理3min,再结晶已经开始,保温时间〉120min时晶粒变得相当粗大;合适的固溶处理制度为760℃,10min;在固溶处理制度相同,时效时间为2h,时效温度变化对强度和塑性影响大不;时效时间延长至8h,随时效温度升高,Rm,RPo2呈下降趋势;760℃,10min固溶处理加500℃,8h时效处理后,Rm,值最高可达到1360MPa。  相似文献   

6.
研究了不同固溶时效热处理制度对TB8钛合金棒材组织及性能的影响规律。结果表明,TB8钛合金棒材在890 ℃固溶热处理后可以得到单一等轴β组织,随着保温时间的延长,强度逐渐降低。经520 ℃不同时间时效处理后,β晶粒中析出大量次生α相,使得棒材强度显著增加。当时效保温时间为8 h时,TB8钛合金棒材时效强度达1286 MPa,并保留较好的塑性。推荐TB8钛合金棒材的固溶时效热处理制度为:890 ℃×30 min,WQ+520 ℃×8 h,AC。  相似文献   

7.
《铸造技术》2015,(3):644-646
研究了固溶处理、人工时效、固溶和人工时效等不同热处理制度对AZ80合金显微组织与力学性能的影响。结果表明,固溶和时效处理可以显著改善AZ80合金的力学性能。其最佳热处理工艺为:420℃固溶2 h+180℃时效18 h。  相似文献   

8.
TB10钛合金的焊接组织与性能   总被引:1,自引:0,他引:1  
研究电子束焊接态TB10钛合金的显微组织和力学性能.结果表明:TB10板材焊区经过固溶及双重时效后,可得到较好的强度配合以及优异的显微组织和力学性能;焊接和焊接前的热处理工艺使焊区的抗拉强度、屈服强度和塑性均有所下降;经过(725 ℃,1 h,FC)固溶处理后经双重时效处理后,焊区的冲击断裂韧性达到31.3~45.6 J/cm2;固溶+双重时效处理后,合金基体和焊区的显微组织由β相、粗大的初生α相、短小细长的针状次生α相组成;热处理后,合金元素在不同相中的重新分布使各相变得更加稳定.  相似文献   

9.
热处理对TC4钛合金厚板组织和性能的影响   总被引:1,自引:0,他引:1  
采用正交试验方法,研究了不同热处理制度对TC4钛合金厚板显微组织和力学性能的影响。结果表明,固溶温度对合金显微组织、室温拉伸强度、塑性和断裂韧性影响很大。相变点下固溶时合金组织为双态组织,相变点上固溶时合金组织为魏氏组织;当固溶温度从975℃相变点下增加到1045℃相变点上时合金的强度变化不大,合金的塑性大幅下降,而合金的断裂韧性逐渐升高;TC4钛合金厚板在975℃/10 min+670℃/1 h热处理,可获得最佳强度-塑性匹配,在995℃固溶处理,670~760℃时效处理可获得最佳强度-韧性匹配。  相似文献   

10.
针对较大直径的TB3钛合金棒材强度低的问题,研究了轧制变形量和固溶后单级及双级时效热处理制度对合金组织与力学性能的影响。结果表明,增大轧制变形量可以使TB3棒材的组织更加均匀、细小,在时效状态下塑性有所改善,但对其固溶、时效后的强度影响不大;对比单级时效与双级时效两种制度热处理结果,单级时效处理的TB3棒材的强度略高,双级时效处理的TB3棒材的伸长率稍优。  相似文献   

11.
固溶温度对TB8钛合金组织及性能的影响   总被引:2,自引:0,他引:2  
研究了固溶温度对TB8钛合金显微组织及力学性能的影响.结果表明,随固溶温度的升高,合金β晶粒明显长大;合金固溶态强度略有降低,塑性逐渐升高;合金固溶+时效处理后,β晶界及晶粒内部均匀弥散析出大量次生α相颗粒,强度呈上升趋势,塑性明显降低.TB8钛合金在770 ~ 830℃温度范围内固溶后,具有较高的强度和优异的塑性,经520℃时效后,综合性能优异,抗拉强度> 1300 MPa,伸长率>15%,断面收缩率>55%.  相似文献   

12.
研究了不同热处理工艺对Ti-62222s钛合金棒材显微组织和力学性能的影响。结果表明:Ti-62222s合金在两相区经过普通退火处理后,随着退火温度的升高,初生α相尺寸略有增加,β转变组织增多,次生α片层厚度增加,具有较好的塑性;而经过两相区固溶+时效处理得到双态组织,通过控制固溶温度以及时效温度来调整初生α相含量以及次生α片层厚度,以改善其强度、硬度和塑性。采用880℃/1 h/AC+540℃/8 h/AC两相区固溶+时效的热处理工艺,可实现合金强度-塑性-硬度的较好匹配,获得优良的综合性能。  相似文献   

13.
研究了固溶温度、冷却方式、保温时间及取样方向对两相区锻造的大规格TC17钛合金棒材显微组织和力学性能的影响,并根据实验结果选择最佳热处理制度。结果表明:TC17钛合金棒材的最佳热处理工艺为800℃/2h/WQ+630℃/8h/AC;固溶温度在两相区时,随着固溶温度的升高,合金强度升高,塑性降低;固溶空冷+时效的合金较相同温度固溶水冷+时效的合金强度高、塑性低;在相同温度固溶水冷条件下,缩短固溶保温时间,可改善合金的塑性;锻造后的TC17钛合金大规格棒材存在各向异性。  相似文献   

14.
利用光学显微镜、扫描电镜和拉伸试验机等研究了不同时效温度对固溶态TB15钛合金微观组织和力学性能的影响。结果表明:随着时效温度从520 ℃升高到540 ℃,TB15钛合金的拉伸强度和屈服强度先增加后减小,在530 ℃时效处理后可以获得最高的抗拉强度和屈服强度;时效处理后合金塑性偏低,其变化规律与强度相反。在断裂韧性方面,随着时效温度的上升,TB15钛合金的断裂韧性逐渐提高。固溶态TB15钛合金经不同温度时效处理后,析出大量的次生α片层相,等轴β组织转变为片层α和β转变组织。  相似文献   

15.
采用BLT-C1000型激光立体成形设备制备了沉积态的TB18钛合金,然后采用OM、SEM和拉伸试验机等方法研究了不同热处理工艺对TB18钛合金显微组织和力学性能的影响。结果表明,沉积态试验合金的宏观组织以长条形β晶粒为主,晶内由亚稳β相和针状次生α相组成,且存在贯穿β晶粒的沉积层线。随着直接时效温度的升高,原始β晶粒形状变化不大,内部次生α相厚度增加,在形貌上次生α相从针状向片状转变。直接时效温度高于550 ℃时,沉积层线消失,直接固溶温度高于830 ℃时显微组织以全β晶粒组成。固溶+时效处理后,微观组织以纵横交错的细层片状α相为主。随着直接时效温度的升高,抗拉强度和屈服强度降低,伸长率增加。固溶+时效后析出次生α相,抗拉强度和屈服强度显著增加,同时伸长率下降。综合考虑,实际生产中沉积态的TB18钛合金的最佳热处理工艺为直接时效500 ℃×4 h,此时强度和伸长率均高于指标要求。  相似文献   

16.
TC16钛合金在780、800、850、900℃下固溶热处理30 min,分别以水淬、空冷、炉冷方式进行冷却,再分别在520、560和600℃保温2、4、8、16 h空冷进行时效处理,利用OM和室温拉伸性能测试等方法,研究了不同热处理工艺对TC16钛合金棒材组织和性能的影响。结果表明,固溶温度对TC16钛合金塑性影响不大,相同的固溶时效处理制度下,随时效时间增加和温度的提高,合金强度和塑性都增加。TC16钛合金较合理的固溶时效处理工艺为:(780±20)℃固溶处理,保温2 h,炉冷至550℃以下后空冷,后在560℃下时效8 h,空冷,如此能获得要求的室温拉伸性能及良好的综合性能。  相似文献   

17.
研究了不同时效温度对时效处理后的Ti-5523合金的微观组织和力学性能的影响。结果表明:在合金相变点(790±5)℃以下的760℃或相变点以上的840℃固溶处理1 h,460~580℃时效处理8 h,Ti-5523合金的微观组织和力学性能对时效温度敏感。合金强度随着时效温度升高而降低,塑性则逐渐提高。合金在760℃×1 h/AC固溶+580℃×8 h/AC时效处理后的断后伸长率和断面收缩率分别为17. 50%和67%,具有良好的塑性。固溶及时效处理后的Ti-5523合金强度主要受α相含量和尺寸的影响,α相尺寸减小或α相含量增加均可以提高合金的强度。随着时效温度的升高,在双相区固溶的时效态合金的初α相逐渐从长条状向短球状、椭球状转变,且含有短球状、椭球状的初生α相的合金具有更好的塑性变形能力。由于初生α相和次生α相的尺寸、含量随着时效温度的增加而发生的改变对合金力学性能产生的影响是协同的,因此双相区固溶的时效态合金的力学性能对时效温度非常敏感。  相似文献   

18.
周伟  葛鹏  赵永庆  陈军 《热加工工艺》2007,36(22):18-20,23
研究了一种新型的亚稳定β钛合金在α β两相区固溶时效处理(850℃×1h AC 600℃x6h AC)、β区固溶时效(880℃×lh AC 600℃×6h AC)、α β和β双重处理(850℃×0.5 h→880℃×0.5h AC 600℃×6h AC)3种热处理状态下的显微组织与力学性能.结果表明,850℃固溶处理没有改变原始加工态组织形貌;880℃固溶的显微组织为再结晶晶粒,低温时效后析出少量的α相;β (α β)双重处理后的显微组织为再结晶的β晶粒内析出较多的α相.无论在α β区还是在β区固溶时效处理,该合金都具有很好的强度短线塑性匹配关系,且达到了很高的强度级别;再结晶对于提高合金的断裂韧性有利,但从保持合金塑性的角度,固溶温度不宜选择在β温度区.因此将固溶温度定在α β两相区的接近β相变点的850℃是相对合理的.  相似文献   

19.
热处理对铸造Al-Si-Cu-Mg合金的强化起到至关重要的作用。针对某公司的铸造Al-Si-Cu-Mg合金热处理过程所需时间长的问题,研究了不同固溶温度、固溶时间组合以及不同时效温度、时效时间组合对于该合金显微组织和力学性能的影响,最终优化出更合理的热处理工艺制度:500℃×6 h+520℃×8 h固溶处理+170℃×7 h时效处理。  相似文献   

20.
深入分析了各变形工艺参数对TB8合金固溶处理显微组织的影响规律,建立了固溶组织再结晶体积分数、平均晶粒尺寸与变形工艺参数间的神经网络预测模型。结果表明,冷却和热处理制度相同的条件下,变形温度、变形程度和应变速率等变形工艺参数对TB8钛合金形变且固溶处理后的显微组织有重要的影响,若想获得晶粒较为细小且均匀的组织,需要在合适的应变速率下适当提高变形程度和降低变形温度;人工神经网络的预测结果与实测结果的高度拟合,表明人工神经网络模型可以较为精确地预测TB8合金的显微组织随变形工艺参数的变化而变化的情况。以上研究工作为TB8合金热加工工艺的制定提供了更为科学的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号