首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对一个375 MW热电厂的锅炉-汽轮机系统仿真模型,采用多层前向神经网络进行离线建模;讨论了网络结构设计、训练算法等神经网络建模问题;采用相同的固定负荷数据分别建立了线性ARX模型和局部神经网络模型并做多步预测比较;通过对基于一层隐层的全局神经网络模型的训练和仿真,结果证实了神经网络在非线性系统建模和辨识上的有效性.  相似文献   

2.
This paper puts forward a novel recurrent neural network (RNN), referred to as the context layered locally recurrent neural network (CLLRNN) for dynamic system identification. The CLLRNN is a dynamic neural network which appears in effective in the input–output identification of both linear and nonlinear dynamic systems. The CLLRNN is composed of one input layer, one or more hidden layers, one output layer, and also one context layer improving the ability of the network to capture the linear characteristics of the system being identified. Dynamic memory is provided by means of feedback connections from nodes in the first hidden layer to nodes in the context layer and in case of being two or more hidden layers, from nodes in a hidden layer to nodes in the preceding hidden layer. In addition to feedback connections, there are self-recurrent connections in all nodes of the context and hidden layers. A dynamic backpropagation algorithm with adaptive learning rate is derived to train the CLLRNN. To demonstrate the superior properties of the proposed architecture, it is applied to identify not only linear but also nonlinear dynamic systems. The efficiency of the proposed architecture is demonstrated by comparing the results to some existing recurrent networks and design configurations. In addition, performance of the CLLRNN is analyzed through an experimental application to a dc motor connected to a load to show practicability and effectiveness of the proposed neural network. Results of the experimental application are presented to make a quantitative comparison with an existing recurrent network in the literature.  相似文献   

3.
Nonlinear control structures based on embedded neural system models   总被引:5,自引:0,他引:5  
This paper investigates in detail the possible application of neural networks to the modeling and adaptive control of nonlinear systems. Nonlinear neural-network-based plant modeling is first discussed, based on the approximation capabilities of the multilayer perceptron. A structure is then proposed to utilize feedforward networks within a direct model reference adaptive control strategy. The difficulties involved in training this network, embedded within the closed-loop are discussed and a novel neural-network-based sensitivity modeling approach proposed to allow for the backpropagation of errors through the plant to the neural controller. Finally, a novel nonlinear internal model control (IMC) strategy is suggested, that utilizes a nonlinear neural model of the plant to generate parameter estimates over the nonlinear operating region for an adaptive linear internal model, without the problems associated with recursive parameter identification algorithms. Unlike other neural IMC approaches the linear control law can then be readily designed. A continuous stirred tank reactor was chosen as a realistic nonlinear case study for the techniques discussed in the paper.  相似文献   

4.
A direct adaptive neural control scheme for a class of nonlinear systems is presented in the paper. The proposed control scheme incorporates a neural controller and a sliding mode controller. The neural controller is constructed based on the approximation capability of the single-hidden layer feedforward network (SLFN). The sliding mode controller is built to compensate for the modeling error of SLFN and system uncertainties. In the designed neural controller, its hidden node parameters are modified using the recently proposed neural algorithm named extreme learning machine (ELM), where they are assigned random values. However, different from the original ELM algorithm, the output weight is updated based on the Lyapunov synthesis approach to guarantee the stability of the overall control system. The proposed adaptive neural controller is finally applied to control the inverted pendulum system with two different reference trajectories. The simulation results demonstrate good tracking performance of the proposed control scheme.  相似文献   

5.
用含动态隐层的前馈网辨识非线性系统   总被引:1,自引:0,他引:1  
用含动态隐层的前馈网对非线性系统建立全局成立的输入输出模型,证明了这种辨识 结构的可行性,网络学习算法为动态BP法.  相似文献   

6.
In this paper, we introduce a concept of advanced self-organizing polynomial neural network (Adv_SOPNN). The SOPNN is a flexible neural architecture whose structure is developed through a modeling process. But the SOPNN has a fatal drawback; it cannot be constructed for nonlinear systems with few input variables. To relax this limitation of the conventional SOPNN, we combine a fuzzy system and neural networks with the SOPNN. Input variables are partitioned into several subspaces by the fuzzy system or neural network, and these subspaces are utilized as new input variables to the SOPNN architecture. Two types of the advanced SOPNN are obtained by combining not only the fuzzy rules of a fuzzy system with SOPNN but also the nodes in a hidden layer of neural networks with SOPNN into one methodology. The proposed method is applied to the nonlinear system with two inputs, which cannot be identified by conventional SOPNN to show the performance of the advanced SOPNN. The results show that the proposed method is efficient for systems with limited data set and a few input variables and much more accurate than other modeling methods with respect to identification error.  相似文献   

7.
从提高神经网络泛化能力的角度提出一种改进方法.利用Taylor级数展开的思想,用线性和非线性组合构成函数映射关系,即改进的神经网络是用原神经网络的非线性映射和关于输入信号的线性映射的和来逼近期望值.文中还给出了该神经网络学习速率的自适应调节方法.对线性对象和非线性对象分别进行建模仿真,结果表明,改进的神经网络比基于正则化方法的神经网络具有更好的泛化能力.  相似文献   

8.
Blind equalization of a noisy channel by linear neural network   总被引:1,自引:0,他引:1  
In this paper, a new neural approach is introduced for the problem of blind equalization in digital communications. Necessary and sufficient conditions for blind equalization are proposed, which can be implemented by a two-layer linear neural network, in the hidden layer, the received signals are whitened, while the network outputs provide directly an estimation of the source symbols. We consider a stochastic approximate learning algorithm for each layer according to the property of the correlation matrices of the transmitted symbols. The proposed class of networks yield good results in simulation examples for the blind equalization of a three-ray multipath channel.  相似文献   

9.
Jun-Fei Qiao  Hong-Gui Han 《Automatica》2012,48(8):1729-1734
In this paper, a novel self-organizing radial basis function (SORBF) neural network is proposed for nonlinear identification and modeling. The proposed SORBF consists of simultaneous network construction and parameter optimization. It offers two important advantages. First, the hidden neurons in the SORBF neural network can be added or removed, based on the neuron activity and mutual information (MI), to achieve the appropriate network complexity and maintain overall computational efficiency for identification and modeling. Second, the model performance can be significantly improved through the parameter optimization. The proposed parameter-adjustment-based optimization algorithm, utilizing the forward-only computation (FOC) algorithm instead of the traditionally forward-and-backward computation, simplifies neural network training, and thereby significantly reduces computational complexity. Additionally, the convergence of the SORBF is analyzed in both the structure organizing process phase and the phase following the modification. Lastly, the proposed approach is applied to model and identify the nonlinear dynamical systems. Simulation results demonstrate its effectiveness.  相似文献   

10.
To compensate the linear and nonlinear distortions and to track the characteristic of the time-varying channel in digital communication systems, a novel adaptive decision feedback equalizer (DFE) with the combination of finite impulse response (FIR) filter and functional link neural network (CFFLNNDFE) is introduced in this paper. This convex nonlinear combination results in improving the convergence speed while retaining the lower steady-state error at the cost of a small increasing computational burden. To further improve the performance of the nonlinear equalizer, we derive here a novel simplified modified normalized least mean square (SMNLMS) algorithm. Moreover, the convergence properties of the proposed algorithm are analyzed. Finally, computer simulation results which support analysis are provided to evaluate the performance of the proposed equalizer over the functional link neural network (FLNN), radial basis function (RBF) neural network and linear equalizer with decision feedback (LMSDFE) for time-invariant and time-variant nonlinear channel models in digital communication systems.  相似文献   

11.
The paper presents an approach to model nonlinear dynamic behaviors of the Automatic Depth Control Electrohydraulic System (ADCES) of a certain minesweeping weapon with Radial Basis Function (RBF) neural networks trained by hierarchical genetic algorithm. In the proposed hierarchical genetic algorithm, the control genes are used to determine the number of hidden units, and the parameter genes are used to identify center parameters of hidden units. In order to speed up convergence of the proposed algorithm, width and weight parameters of RBF neural network are calculated by linear algebra methods. The proposed approach is applied to the modelling of the ADCES, and experimental results clearly indicate that the obtained RBF neural network can emulate complex dynamic characteristics of the ADCES satisfactorily. The comparison results also show that the proposed approach performs better than the traditional clustering-based method.  相似文献   

12.
基于复合正交神经网络的自适应逆控制系统   总被引:10,自引:0,他引:10  
叶军 《计算机仿真》2004,21(2):92-94
目前,在自适应逆控制系统中常采用BP神经网络,而BP网络存在算法复杂、易陷入局部极小解等不足。而正交神经网络能克服BP网络的不足,但由于正交神经网络学习算法存在某些局限性,提出了一种复合正交神经网络,该正交网络结构与三层前向正交网络相同,不同的是正交网络的隐单元处理函数采用带参数的Sigmoid函数的复合正交函数,该神经网络算法简单,学习收敛速度快,并能对网络的函数参数进行优化,为非线性系统的动态建模提供了一种方法。仿真实验表明,网络在用于过程的自适应逆控制中具有很高的控制精度和自适应学习能力。该动态神经网络比其它神经网络具有更强的建模能力与学习适应性,有线性、非线性逼近精度高等优异特性,非常适合于实时控制系统。  相似文献   

13.

The dynamics identification and subsequent control of a nonlinear system is not a trivial issue. The application of a neural gas network that is trained with a supervised batch version of the algorithm can produce identification models in a robust way. In this paper, the neural model identifies each local transfer function, demonstrating that the local linear approximation can be done. Moreover, other parameters are analyzed in order to obtain a correct modeling. Furthermore, the algorithm is applied to control a nonlinear multi-input multi-output system composed of tanks. In addition, this plant is a coupled system where the manipulated input variables are influencing all the output variables. The aim of the work is to demonstrate that the supervised neural gas algorithm is able to obtain linear models to be used in a state space design scenario to control nonlinear coupled systems and guarantee a robust control method. The results are compared with the common approach of using a recurrent neural controller trained with a dynamic backpropagation algorithm. Regarding the steady-state errors in disturbance rejection, reference tracking and sensitivity to simple process changes, the proposed approach shows an interesting application to control nonlinear plants.

  相似文献   

14.
This paper discusses a model refernce adaptive (MRAC) position/force controller using proposed neural networks for two co-operating planar robots. The proposed neural network is a recurrent hybrid network. The recurrent networks have feedback connections and thus an inherent memory for dynamics, which makes them suitable for representing dynamic systems. A feature of the networks adopted is their hybrid hidden layer, which includes both linear and nonlinear neurons. On the other hand, the results of the case of a single robot under position control alone are presented for comparison. The results presented show the superior ability of the proposed neural network based model reference adaptive control scheme at adapting to changes in the dynamics parameters of robots.  相似文献   

15.
针对径向基神经函数(RBF)网络隐层结构难以确定的问题, 本文介绍了一种基于神经元特性的RBF神经网 络自组织设计方法, 该方法将神经元的激活活性、显著性、相关性相结合设计RBF(ASC–RBF)神经网络. 首先利用 神经元的激活活性, 实现隐含层神经元的自适应增加, 结合神经元的显著性以及神经元之间的相关性, 实现神经元 的自适应替换和合并, 完成网络自组织设计并提高网络的紧凑性, 然后利用二阶梯度算法对网络参数进行修正学 习, 保证了RBF网络的精度; 另外, 针对网络结构自组织机制给出了稳定性分析; 最后通过两个基准非线性系统建模 仿真实验以及实际污水处理过程水质参数预测实验验证, 证明该算法的有效性. 对比实验结果表明, ASC–RBF神经 网络与现有的自组织网络相比, 在保证泛化性能的同时, 该网络的训练速度更快, 而且有更紧凑的网络结构.  相似文献   

16.
A direct adaptive state-feedback controller is proposed for highly nonlinear systems. We consider uncertain or ill-defined nonaffine nonlinear systems and employ a neural network (NN) with flexible structure, i.e., an online variation of the number of neurons. The NN approximates and adaptively cancels an unknown plant nonlinearity. A control law and adaptive laws for the weights in the hidden layer and output layer of the NN are established so that the whole closed-loop system is stable in the sense of Lyapunov. Moreover, the tracking error is guaranteed to be uniformly asymptotically stable (UAS) rather than uniformly ultimately bounded (UUB) with the aid of an additional robustifying control term. The proposed control algorithm is relatively simple and requires no restrictive conditions on the design constants for the stability. The efficiency of the proposed scheme is shown through the simulation of a simple nonaffine nonlinear system.  相似文献   

17.
Accurate predictions of time series data have motivated the researchers to develop innovative models for water resources management. Time series data often contain both linear and nonlinear patterns. Therefore, neither ARIMA nor neural networks can be adequate in modeling and predicting time series data. The ARIMA model cannot deal with nonlinear relationships while the neural network model alone is not able to handle both linear and nonlinear patterns equally well. In the present study, a hybrid ARIMA and neural network model is proposed that is capable of exploiting the strengths of traditional time series approaches and artificial neural networks. The proposed approach consists of an ARIMA methodology and feed-forward, backpropagation network structure with an optimized conjugated training algorithm. The hybrid approach for time series prediction is tested using 108-month observations of water quality data, including water temperature, boron and dissolved oxygen, during 1996–2004 at Büyük Menderes river, Turkey. Specifically, the results from the hybrid model provide a robust modeling framework capable of capturing the nonlinear nature of the complex time series and thus producing more accurate predictions. The correlation coefficients between the hybrid model predicted values and observed data for boron, dissolved oxygen and water temperature are 0.902, 0.893, and 0.909, respectively, which are satisfactory in common model applications. Predicted water quality data from the hybrid model are compared with those from the ARIMA methodology and neural network architecture using the accuracy measures. Owing to its ability in recognizing time series patterns and nonlinear characteristics, the hybrid model provides much better accuracy over the ARIMA and neural network models for water quality predictions.  相似文献   

18.
An accurate product reliability prediction model can not only learn and track the product’s reliability and operational performance, but also offer useful information for managers to take follow-up actions to improve the product’ quality and cost. This study proposes a new method for predicting the reliability for repairable systems. The novel method constructs a predictive model by employing evolutionary neural network modeling approach. Genetic algorithms are used to globally optimize the number of neurons in the hidden layer and learning parameters of the neural network architecture. Moreover, two case studies are presented to illustrate the proposed method. The prediction accuracy of the novel method is compared with that of other methods to illustrate the feasibility and effectiveness of the proposed method.  相似文献   

19.
This study examines the capability of neural networks for linear time-series forecasting. Using both simulated and real data, the effects of neural network factors such as the number of input nodes and the number of hidden nodes as well as the training sample size are investigated. Results show that neural networks are quite competent in modeling and forecasting linear time series in a variety of situations and simple neural network structures are often effective in modeling and forecasting linear time series.Scope and purposeNeural network capability for nonlinear modeling and forecasting has been established in the literature both theoretically and empirically. The purpose of this paper is to investigate the effectiveness of neural networks for linear time-series analysis and forecasting. Several research studies on neural network capability for linear problems in regression and classification have yielded mixed findings. This study aims to provide further evidence on the effectiveness of neural network with regard to linear time-series forecasting. The significance of the study is that it is often difficult in reality to determine whether the underlying data generating process is linear or nonlinear. If neural networks can compete with traditional forecasting models for linear data with noise, they can be used in even broader situations for forecasting researchers and practitioners.  相似文献   

20.
为了提高通信系统信道估计的准确率,同时适应更大的数据量,进行更加复杂的数据计算,引入神经网络的方法进行信道估计,采用了BP和RBF神经网络进行实验对比,与传统信道估计方式相比有明显提升;在此基础上,进一步提出基于改进遗传算法优化的 RBF 神经信道估计方法,目的是帮助确定 RBF 网络的隐藏层参数, 使得网络的参数趋于全局最优解,信道估计器的性能从而得到提升。经过 MATLAB 仿真,改进后的RBF神经网络可以更好地解决信道估计问题,验证了此方法的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号