首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conventional cerebellar model articulation controllers (CMAC) learning scheme equally distributes the correcting errors into all addressed hypercubes, regardless of the credibility of those hypercubes. This paper presents the adaptive fault-tolerant control scheme of non-linear systems using a fuzzy credit assignment CMAC neural network online fault learning approach. The credit assignment concept is introduced into fuzzy CMAC weight adjusting to use the learned times of addressed hypercubes as the credibility of CMAC. The correcting errors are proportional to the inversion of learned times of addressed hypercubes. With this fault learning model, the learning speed of fault can be improved. After the unknown fault is estimated, online, by using the fuzzy credit assignment CMAC, the effective control law reconfiguration strategy based on the sliding mode control technique is used to compensate for the effect of the fault. The proposed fault-tolerant controller adjusts its control signal by adding a corrective sliding mode control signal to confine the system performance within a boundary layer. The numerical simulations demonstrate the effectiveness of the proposed CMAC algorithm and fault-tolerant controller.  相似文献   

2.
为了解决无轴承异步电机运行控制中转速检测的问题,实现对其高性能控制,提出了一种基于左逆系统的无速度传感器控制方法.建立了转速与转矩绕组定子电流的子系统,并证明了该子系统是左可逆的,将左逆系统与该子系统串联,便可实现对转速的观测.应用该方法建立了无轴承异步电机无速度传感器的矢量控制系统,并进行仿真研究.结果表明,该方法能在无轴承异步电机全速范围内准确观测出转速,实现无速度传感器方式的稳定悬浮运行.  相似文献   

3.
应用信度分配的模糊CMAC实现非线性系统的容错控制   总被引:4,自引:1,他引:4  
朱大齐  孔敏 《自动化学报》2006,32(3):329-336
The adaptive fault-tolerant control scheme of dynamic nonlinear system based on the credit assigned fuzzy CMAC neural network is presented. The proposed learning approach uses the learned times of addressed hypercubes as the credibility, the amounts of correcting errors are proportional to the inversion of the learned times of addressed hypercubes. With this idea, the learning speed can indeed be improved. Based on the improved CMAC learning approach and using the sliding control technique, the effective control law reconfiguration strategy is presented. Thesystem stability and performance are analyzed under failure scenarios. The numerical simulation demonstrates the effectiveness of the improved CMAC algorithm and the proposed fault-tolerant controller.  相似文献   

4.
The advantage of using cerebellar model articulation control (CMAC) network has been well documented in many applications. However, the structure of a CMAC network which will influence the learning performance is difficult to select. This paper proposes a dynamic structure CMAC network (DSCN) which the network structure can grow or prune systematically and their parameters can be adjusted automatically. Then, an adaptive dynamic CMAC neural control (ADCNC) system which is composed of a computation controller and a robust compensator is proposed via second-order sliding-mode approach. The computation controller containing a DSCN identifier is the principal controller and the robust compensator is designed to achieve L2 tracking performance with a desired attenuation level. Moreover, a proportional–integral (PI)-type adaptation learning algorithm is derived to speed up the convergence of the tracking error in the sense of Lyapunov function and Barbalat’s lemma, thus the system stability can be guaranteed. Finally, the proposed ADCNC system is applied to control a chaotic system. The simulation results are demonstrated that the proposed ADCNC scheme can achieve a favorable control performance even under the variations of system parameters and initial point.  相似文献   

5.
段晓燕 《计算机应用》2010,30(8):2049-2051
针对传统迭代学习控制在面临新的环境或控制任务时学习时间长、收敛速度慢的问题,首先引入迭代学习初始控制算法,并给出了算法收敛的充分必要条件;然后,利用小脑模型连接控制网络(CMAC)与反馈PID网络进行综合,在系统的历史控制经验基础上,估计系统的期望控制输入,作为迭代学习控制器的初始控制输入,再由开闭环P型迭代学习律逐步改善控制效果,从而避免了对初始控制输入量的盲目选择,使得系统的实际输出只需较少的迭代次数就能达到跟踪的精度要求。机器人系统的仿真结果表明了该算法的可行性与有效性。  相似文献   

6.
Stock index forecasting is one of the major activities of financial firms and private investors in making investment decisions. Although many techniques have been developed for predicting stock index, building an efficient stock index forecasting model is still an attractive issue since even the smallest improvement in prediction accuracy can have a positive impact on investments. In this paper, an efficient cerebellar model articulation controller neural network (CAMC NN) is proposed for stock index forecasting. The traditional CAMC NN scheme has been successfully used in robot control due to its advantages of fast learning, reasonable generalization capability and robust noise resistance. But, few studies have been reported in using a CMAC NN scheme for forecasting problems. To improve the forecasting performance, this paper presents an efficient CMAC NN scheme. The proposed CMAC NN scheme employs a high quantization resolution and a large generalization size to reduce generalization error, and uses an efficient and fast hash coding to accelerate many-to-few mappings. The forecasting results and robustness evaluation of the proposed CMAC NN scheme were compared with those of a support vector regression (SVR) and a back-propagation neural network (BPNN). Experimental results from Nikkei 225 and Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) closing indexes show that the performance of the proposed CMAC NN scheme was superior to the SVR and BPNN models.  相似文献   

7.
基于平衡学习的CMAC神经网络非线性滑模容错控制   总被引:2,自引:1,他引:1  
以一改进的信度分配CMAC(cerebellar model articulation controllers)神经网络为在线故障诊断的手段,将变结构滑模摔制技术引入容错控制器设计之中,提出一种动态非线性系统主动容错控制方法.在常规CMAC学习算法中,误差被平均地分配给所有被激活的存储单元,不管各存储单元存储数据(权值)的可信程度.改进的CMAC中,利用激活单元先前学习次数作为可信度,其误差校正值与激活单元先前学习次数的-p次方成比例,从而提高神经网络的在线学习速度和精度;在此基础上利用滑模控制算法进行容错控制律的在线重构,实现动态非线性系统在线故障诊断与容错控制的集成.分析了系统的稳定性,仿真结果表明改进故障学习算法及容错控制的有效性.  相似文献   

8.
Inherently, the brushless DC motor (BLDCM) is a nonlinear plant. So, it is hard to get a good performance by using the conventional PI controller for the speed control of BLDCM. In this paper, a fuzzy adaptive single neuron neural networks (NN) controller for BLDCM is developed. The fuzzy logic system (FLS) is adopted to adjust the parameter K of single neuron NN controller online. By this way, performance of the system can be improved. Performances of the proposed fuzzy adaptive single neuron NN controller are compared with the performances of conventional PI controller and normal single neuron NN controller. The experimental results demonstrate that a good control performance is achieved. The using of fuzzy adaptive single neuron NN makes the drive system robust, accurate, and insensitive to parameter variations.  相似文献   

9.
A saliency back‐EMF estimator with a proportional–integral–derivative neural network (PIDNN) torque observer is proposed in this study to improve the speed estimating performance of a sensorless interior permanent magnet synchronous motor (IPMSM) drive system for an inverter‐fed compressor. The PIDNN torque observer is proposed to replace the conventional proportional–integral–derivative (PID) torque observer in a saliency back‐EMF estimator to improve the estimating performance of the rotor flux angle and speed. The proposed sensorless control scheme use square‐wave type voltage injection method as the start‐up strategy to achieve sinusoidal starting. When the motor speed gradually increases to a preset speed, the sensorless drive will switch to the conventional saliency back‐EMF estimator using the PID observer or the proposed saliency back‐EMF estimator using the PIDNN observer for medium and high speed control. The theories of the proposed saliency back‐EMF rotor flux angle and speed estimation method are introduced in detail. Moreover, the network structure, the online learning algorithms and the convergence analyses of the PIDNN are discussed. Furthermore, a DSP‐based control system is developed to implement the sensorless inverter‐fed compressor drive system. Finally, some experimental results are given to verify the feasibility of the proposed estimator.  相似文献   

10.
The cerebellar model articulation controller (CMAC) has the advantages such as fast learning property, good generalization capability and information storing ability. Based on these advantages, this paper proposes an adaptive CMAC neural control (ACNC) system with a PI-type learning algorithm and applies it to control the chaotic systems. The ACNC system is composed of an adaptive CMAC and a compensation controller. Adaptive CMAC is used to mimic an ideal controller and the compensation controller is designed to dispel the approximation error between adaptive CMAC and ideal controller. Based on the Lyapunov stability theorems, the designed ACNC feedback control system is guaranteed to be uniformly ultimately bounded. Finally, the ACNC system is applied to control two chaotic systems, a Genesio chaotic system and a Duffing–Holmes chaotic system. Simulation results verify that the proposed ACNC system with a PI-type learning algorithm can achieve better control performance than other control methods.  相似文献   

11.
多温区电加热炉自适应PID控制方法   总被引:1,自引:0,他引:1  
多温区电加热炉是一种典型的多输入多输出系统(MIMO),存在着耦合性、不确定性和非线性的控制难点.针对此问题,提出了一种自适应PID控制方法.该方法先以解耦减小系统耦合性,再利用小脑模型关节控制器(CMAC)在线学习系统的未知不确定性及外部扰动,证明了CMAC神经网络在线逼近的收敛性和自适应控制方案的稳定性.实验结果表明,该控制方法有效地控制了各个温区的温度,提高了控制性能,具有实际应用意义.  相似文献   

12.
针对一类具有执行器、传感器故障的多伺服电机控制系统,设计了相应的多伺服电机智能化协调容错轨迹跟踪控制系统.首先,提出了一种新结构的分布式中间估计器,修改了其设计结构,提高了估计方案的可行性.其次,通过在线强化学习估计策略,可以显著提高估计性能,其核心是自适应切换机制与源故障模式定位功能块的集成,并根据估计值设计了协调容...  相似文献   

13.
杜昕阳 《测控技术》2018,37(1):82-86
为了提高注塑机中永磁同步电机控制系统的运行可靠性,优化永磁同步电机的调速系统动态性能,提出了一种基于模型预测电流控制的无速度传感器永磁同步电机非奇异快速终端滑模控制策略.以模型预测电流控制作为电流控制内环,取代传统的PI调节器,能够有效地抑制电流纹波,提高电流的动态跟踪性能.根据非奇异终端滑模的设计原理,构造外环速度控制器,从而生成期望的q轴电流,提高了系统的稳定性.设计无速度传感器对电机运行转速进行在线辨识,实现对转速和转子位置准确地估计.并与传统的PI调节器进行对比,仿真与实验结果表明该控制策略具有较高的可靠性和快速性.  相似文献   

14.
Credit assigned CMAC and its application to online learning robust controllers   总被引:16,自引:0,他引:16  
In this paper, a novel learning scheme is proposed to speed up the learning process in cerebellar model articulation controllers (CMAC). In the conventional CMAC learning scheme, the correct numbers of errors are equally distributed into all addressed hypercubes, regardless of the credibility of the hypercubes. The proposed learning approach uses the inverse of learned times of the addressed hypercubes as the credibility (confidence) of the learned values, resulting in learning speed becoming very fast. To further demonstrate online learning capability of the proposed credit assigned CMAC learning scheme, this paper also presents a learning robust controller that can actually learn online. Based on robust controllers presented in the literature, the proposed online learning robust controller uses previous control input, current output acceleration, and current desired output as the state to define the nominal effective moment of the system from the CMAC table. An initial trial mechanism for the early learning stage is also proposed. With our proposed credit-assigned CMAC, the robust learning controller can accurately trace various trajectories online.  相似文献   

15.
利用CMAC神经网络与PID控制算法,提出了一种针对飞行器挠性结构振动的混合控制方法.首先在给出系统动力学方程的基础上,利用CMAC神经网络的具体特点,给出了神经网络算法;进而将PID控制算法引入控制系统,形成了一种混合控制方法,该方法具有CMAC神经网络与PID控制算法两者的优点.最后针对复杂的飞行器挠性结构振动问题进行了实例仿真,说明了算法的有效性.  相似文献   

16.
模糊CMAC及其在机器人轨迹跟踪控制中的应用   总被引:8,自引:1,他引:7  
小脑模型关节控制器(CMAC)具有结构简单,学习快速的优点,但是它的空间划分方式不能在线进行调整,影响了其自适应能力的提高.本文将模糊理论引入CMAC,提出了一种能够反映人类小脑认知的模糊性和连续性的模糊小脑模型关节控制器(FCMAC).该控制器对CMAC的空间划分方式进行了模糊化处理,可通过BP学习算法对CMAC的空间划分方式进行在线调整,大大提高了CMAC的自适应能力.所提出的FCMAC被应用于机器人的轨迹跟踪控制系统以克服机器人系统中非线性和不确定性因素的影响.仿真实验结果表明,所提FCMAC与传统的CMAC相比性能上有了很大的改善.  相似文献   

17.
飞轮电池储能用集成电机时变非线性特点使得传统PID控制难以得到理想的控制性能,为此基于BP神经网络研究了一种新颖的飞轮电池电力转换器。该控制器结合BP神经网络自学习能力和PID控制的全局渐近稳定性能,通过神经网络在线优化调节PID参数,以实现对飞轮电池的高性能控制。其中,采用变学习速率的神经网络学习算法,学习速率随收敛过程误差的大小而自适应地进行调整,同时使用遗传算法(GA)优化得到PID参数的初始值,这可加快神经网络学习训练的收敛速度并避免陷入局部最小,进一步提高控制性能;另外,PWM采用SVPWM技术以增强能量转换效率和减小转矩脉动。数字仿真表明,基于所提出的BP-PID控制的电力转换矢量控制系统能够使飞轮电池在充放电两端都具有较快动态响应,较小超调,较高稳态精度以及较强的鲁棒性,控制效果明显比传统PID好。  相似文献   

18.
This paper presents a self-organizing control system based on cerebellar model articulation controller (CMAC) for a class of multiple-input-multiple-output (MIMO) uncertain nonlinear systems. The proposed control system merges a CMAC and sliding-mode control (SMC), so the input space dimension of CMAC can be simplified. The structure of CMAC will be self-organized; that is, the layers of CMAC will grow or prune systematically and their receptive functions can be automatically adjusted. The control system consists of a self-organizing CMAC (SOCM) and a robust controller. SOCM containing a CMAC uncertainty observer is used as the principal controller and the robust controller is designed to dispel the effect of approximation error. The gradient-descent method is used to online tune the parameters of CMAC and the Lyapunov function is applied to guarantee the stability of the system. A simulation study of inverted double pendulums system and an experimental result of linear ultrasonic motor motion control show that favorable tracking performance can be achieved by using the proposed control system.  相似文献   

19.
A cerebellar model articulation controller (CMAC) control system, which contains only one single-input controller implemented by a differentiable CMAC, is proposed in this paper. In the proposed scheme, the CMAC controller is solely used to control the plant, and no conventional controller is needed. Without a preliminary offline learning, the single-input CMAC controller can provide the control effort to the plant at each online learning step. To train the differentiable CMAC online, the gradient descent algorithm is employed to derive the learning rules. The sensitivity of the plant, with respect to the input, is approximated by a simple formula so that the learning rules can be applied to unknown plants. Moreover, based on a discrete-type Lyapunov function, conditions on the learning rates guaranteeing the convergence of the output error are derived in this paper. Finally, simulations on controlling three different plants are given to demonstrate the effectiveness of the proposed controller.   相似文献   

20.
为改善永磁同步电机在电梯无齿轮曳引复杂工况下的调速动态性能,使其满足快速性、舒适性的同时,对频繁的负载变化有较强的鲁棒性和稳定性,提出将CMAC神经网络控制应用于电梯行业永磁同步电机调速系统中.通过建立永磁同步电机动态模型,搭建内模控制的电流内环及CMAC网络控制的速度外环仿真控制系统,并对比传统PI控制方式进行仿真实验,结果表明,本调速系统在动态性能、抗扰性能及鲁棒性能上均有显著改善;并根据电梯运行加速度要求,跟踪电梯运行的速度抛物线,验证了在CMAC神经网络的学习和记忆能力下有逐渐提高的稳态精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号