首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Wang Y  Zhang J  Wu J  Coffer JL  Lin Z  Sinogeikin SV  Yang W  Zhao Y 《Nano letters》2008,8(9):2891-2895
Silicon nanowires (Si NWs), one-dimensional single crystalline, have recently drawn extensive attention, thanks to their robust applications in electrical and optical devices as well as in the strengthening of diamond/SiC superhard composites. Here, we conducted high-pressure synchrotron diffraction experiments in a diamond anvil cell to study phase transitions and compressibility of Si NWs. Our results revealed that the onset pressure for the Si I-II transformation in Si NWs is approximately 2.0 GPa lower than previously determined values for bulk Si, a trend that is consistent with the analysis of misfit in strain energy. The bulk modulus of Si-I NWs derived from the pressure-volume measurements is 123 GPa, which is comparable to that of Si-V NWs but 25% larger than the reported values for bulk silicon. The reduced compressibility in Si NWs indicates that the unique wire-like structure in nanoscale plays vital roles in the elastic behavior of condensed matter.  相似文献   

2.
We study the high pressure response, up to 8 GPa, of silicon nanowires (SiNWs) with ~ 15 nm diameter, by Raman spectroscopy. The first order Raman peak shows a superlinear trend, more pronounced compared to bulk Si. Combining transmission electron microscopy and Raman measurements we estimate the SiNWs' bulk modulus and the Grüneisen parameters. We detect an increase of Raman linewidth at ~ 4 GPa, and assign it to pressure induced activation of a decay process into LO and TA phonons. This pressure is smaller compared to the ~ 7 GPa reported for bulk Si. We do not observe evidence of phase transitions, such as discontinuities or change in the pressure slopes, in the investigated pressure range.  相似文献   

3.
The selenium nanowires with diameter of 70 nm and length of 40 μm were synthesized by a facile solution method. High-pressure behavior of Se nanowires has been investigated by in situ Raman scattering up to 20.2 GPa at room temperature. A reversible phase transition from hexagonal to monoclinic occurs at 18.1 GPa. This transition pressure is higher than that of 14.0 GPa for bulk Se. The intrinsic geometry and/or the increasing energy band gap of Se nanowires are considered to contribute to the increase of transition pressure.  相似文献   

4.
Deng Z  Bao Z  Cao L  Chen D  Tang F  Wang F  Liu C  Zou B  Muscat AJ 《Nanotechnology》2008,19(4):045707
Single-crystalline spherical nearly monodisperse tellurium (Te) nanocrystals (NCs) with average diameters of 20 and 90?nm, respectively, have been fabricated for the first time by a facile solution sonochemistry process. The structural characterizations show that the as-synthesized Te NCs have pure hexagonal structure, as revealed by x-ray diffraction (XRD), selected-area electron diffraction (SAED), energy-dispersive x-ray (EDX) spectroscopy, and high-resolution transmission electron microscopy (HRTEM) methods. The size-dependent structural phase transition of Te NCs up to the high pressure of 20?GPa has been investigated in a diamond anvil cell using resistance measurement at room temperature, and compared with the behavior of bulk Te under identical conditions. The experimental results indicate that 20?nm Te NCs, 90?nm NCs, and bulk Te all undergo two phase transitions up to 20?GPa, their respective transition pressures being about 7.2 and 10.3?GPa, 5.9 and 8.8?GPa, and 4.0 and 6.8?GPa. This indicates that the phase transition pressures are higher for the smaller NCs. In this paper we discuss the size-dependent structural phase transitions, the sluggishness of the phase transition process, and the fluctuating properties of the phase transition products at high pressure. The present work might open an avenue to real-time detection of the dynamics of the phase transition in bulk and nanoscale materials at high pressure, and also could serve as a guide to tailoring the microscopic properties of materials.  相似文献   

5.
The effect of pressure on the electrical resistivity of bulk Si20Te80 glass has been studied up to a pressure of 8 GPa. A discontinuous transition occurs at a pressure of 7 GPa. The X-ray diffraction studies on the pressure quenched sample show that the high pressure phase is crystalline with hexagonal structure (c/a = 1.5). On heating, the high pressure hexagonal phase has on exothermic decomposition atT = 586 K into two crystalline phases, which are the stable phases tellurium and SiTe2 obtained by simple heating of the glass.  相似文献   

6.
One-dimensional (1-D) nanostructures such as tubes, rods, wires, and belts have attracted considerable research activities owing to their strong application potential as components for nanosize electronic or optoelectronic devices utilizing superior optical and electrical properties. Characterizing the mechanical properties of nanostructure is of great importance for their applications in electronics, optoelectronics, sensors, actuators. Wide-bandgap SnO2 semiconducting material (Eg = 3.6 eV at room temperature) is one of the attractive candidates for optoelectronic devices operating at room temperature, gas sensors, and transparent conducting electrodes. The synthesis and gas sensing properties of semiconducting SnO2 nanomaterials have became one of important research issues since the first synthesis of SnO2 nanobelts. Considering the important application of SnO2 in sensors, these structures are not only ideal systems for fundamental understanding at the nanoscale level, but they also have potential applications as nanoscale sensors, resonator, and transducers. The structured SnO2 nanorods have been grown on silicon substrates with Au catalytic layer by thermal evporation process over 800 degrees C. The resulting sample is characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDS). The morphology and structural properties of SnO2 nanowires were measured by scanning electron microscopy and high-resolution transmission electron microscopy. The mean diameter of the SnO2 nanorods grown on Au coated silicon (100) substrate is approximately 80 nm. In addition, X-ray diffraction measurements show that SnO2 nanorods have a rutile structure. The formation of SnO2 nanowires has been attributed to the vapor-liquid-solid (VLS) growth mechanisms depending on the processing conditions. We investigated the growth behavior of the SnO2 nanowires by variation of the growth conditions such as gas partial pressure and temperature.  相似文献   

7.
Aluminum alloyed with approximately 1,000 at. ppm Sc was studied by high-pressure energy dispersive X-ray diffraction in two different states, homogenized and aged to peak microhardness. The microhardness of the aged sample is about three times higher than the microhardness of the homogenized sample (as a result of the formation of nanosize Al3Sc precipitates in the aged sample). The results, which were refined using the Rietveld analysis technique, indicate a single cubic phase with no phase transition up to a pressure of 32 GPa. The Vinet equation was used to fit the volume–pressure curve to the equation-of-state. The bulk modulus (B 0) is found to be 73 ± 5 GPa, and is equal to the value measured for an unalloyed aluminum sample. The fact that the bulk modulus does not change, despite a large difference in microhardness between the samples, is the result of the different origins of the two quantities.  相似文献   

8.
《Materials Research Bulletin》2006,41(11):2007-2012
The structural behavior of the monoclinic compound Bi2SrO4 is investigated at high pressures by using Raman scattering and X-ray diffraction (XRD) methods. The results indicate that a pressure-induced phase transition occurred at 10 GPa and completed at 20 GPa. The high-pressure phase is in orthorhombic symmetry. Upon release of pressure to ambient conditions, the monoclinic phase is recovered.  相似文献   

9.
High-pressure X-ray diffraction and Raman studies on holmium sesquioxide (Ho2O3) have been carried out up to a pressure of ∼17 GPa in a diamond-anvil cell at room temperature. Holmium oxide, which has a cubic or bixbyite structure under ambient conditions, undergoes an irreversible structural phase transition at around 9.5 GPa. The high-pressure phase has been identified to be low symmetry monoclinic type. The two phases coexist to up to about 16 GPa, above which the parent phase disappears. The high-pressure laser-Raman studies have revealed that the prominent Raman band ∼370 cm−1 disappears around the similar transition pressure. The bulk modulus of the parent phase is reported.  相似文献   

10.
We report here combined quasi-hydrostatic high-pressure small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD) studies on faceted 3D supercrystals (SCs) self-assembled from colloidal 7.0 nm spherical PbS nanocrystals (NCs). Diamond anvil cell (DAC) SAXS experiments in the pressure range from ambient to 12.5 GPa revealed nearly perfect structural stability of the SCs, with face-centered cubic organization of the NCs. Pressure-induced ordering (annealing effect) of the superstructure was observed. The ambient pressure bulk modulus of the SCs was calculated to be ~5 GPa for compression and ~14.5 GPa for decompression from fitting of Vinet and Birch-Murnaghan equations of state. XRD measurements revealed strong preferential crystallographic orientation of the NCs through all phase transformations to as high as 55 GPa without any indication of NC sintering. The first phase transition pressure of the NCs was found between 8.1 and 9.2 GPa and proceeds through homogeneous nucleation. Bulk modulus of PbS NCs was calculated to be ~51 GPa based on fitting to the equations of state (K(PbS,bulk) ~ 51-57 GPa). Closest surface-to-surface distance between the NCs in the SCs was calculated based on combined XRD and SAXS data, to reversibly tune from ~1.56 nm to ~0.9-0.92 nm and back to ~1.36 nm in the ambient-12.5 GPa-ambient pressure cycle. The bulk modulus of the ligand matrix was extrapolated to be ~2.2-2.95 GPa. These results show a general method of tuning NC interactions in packed nanoparticle solids.  相似文献   

11.
In the earlier pressure-dependent Raman spectroscopic studies, it has been reported that BaTiO3 undergoes a tetragonal to cubic phase transition above ~ 2 GPa, whereas pressure-dependent X-ray absorption, X-ray diffuse scattering studies and pair distribution function studies have reported the presence of a low-symmetry rhombohedral phase above ~ 2.3 GPa. In this report, we present our pressure-dependent Raman spectroscopic studies on polycrystalline BaTiO3 which shows that it first undergoes a transition from tetragonal to orthorhombic/rhombohedral phase above ~ 2.6 GPa and then finally goes to the cubic phase above 8.4 GPa. Pressure-dependent synchrotron X-ray diffraction (SXRD) studies have also been carried out that provided rate of change of volume as a function of pressure resulting in bulk modulus of 215 ± 9 GPa.  相似文献   

12.
ZnS nano-particles with average sizes of 10 nm and 5 nm were fabricated by sol-gel method, and their pressure-induced phase transformations were in-situ examined in a diamond anvil cell by energy dispersive X-ray diffraction (EDXD) from ambient pressure to 35.0 GPa. From the obtained interplanar spacing data,the volume compression ratios were derived at different pressures, and then the bulk modulus and its pressure derivative were obtained by fitting to the Murnaghan equation. It is found that both ZnS nano-particles initially in the zinc-blende phase transformed to cubic NaCl structure in the presence of pressure and the transition was reversible when the pressure was released. Moreover, it is suggested that a smaller particle size will induce a larger transition pressure.  相似文献   

13.
A new method for growing silicon nanowires is presented. They were grown in an aqueous solution at a temperature of 85℃ under atmospheric pressure by using sodium methylsiliconate as a water-soluble silicon precursor. The structure, morphology, and composition of the as-grown nanowires were characterized by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectrometry. It was also confirmed by X-ray powder diffraction and Raman spectroscopy that the silicon nanowire has a hexagonal structure. It was possible to grow the crystalline silicon nanowires at low temperature under atmospheric pressure because potassium iodide, which was used as a gold etchant, sufficiently increased the surface energy and reactivity of gold as a metal catalyst for the reaction of the Si precursor even at low temperature.  相似文献   

14.
The effect of pressure on the variation of the crystallization phases of the Zr55u30Al10Ni5 bulk glass and its thermal stability under high pressure annealing was investigated by X-ray diffraction (XRD)and differential scanning calorimeter(DSC).The mode of crystallization and products of crystallization of the Zr55Cu30Al10Ni5 bulk glass were quite different pressure.At ambient pressure,the crystallization products consisted of NiZr2 and CuZr2,while at pressure of 1 Gpa and 3 Gpa,the alloys crystallized into NiZr2 and Cu10Zr7,respectively.The alloy was nearly not crystallized and only a small amount of Cu10Zr7 was precipitated under 5 Gpa.DSC proved that the mode of the crystallization under high pressure was different from that at ambient pressure.  相似文献   

15.
采用真空灌注结合溶胶-凝胶和氧化铝模板法,在多孔氧化铝模板中制备了平均直径为50 nm的NiFe2O4纳米线阵列.X射线衍射结果显示所制备的纳米线是纯相的NiFe2O4纳米线,透射电镜和电子衍射的结果显示已制备的纳米线是多晶的且表面光滑,场发射扫描电镜图片显示纳米线是大面积且平行有序的、纳米线的长度和所用的氧化铝模板的厚度相当.磁测量的结果显示此纳米线阵列有形状各向异性,同块状材料相比矫顽力有所增强.对纳米线的生长机理做了简单的讨论.  相似文献   

16.
Quan Z  Wang Y  Bae IT  Loc WS  Wang C  Wang Z  Fang J 《Nano letters》2011,11(12):5531-5536
Using an in situ synchrotron X-ray diffraction technique, a pressure-induced phase transformation of PbTe nanocrystals with sizes of 13 and 5 nm up to ~20 GPa was studied. Upon an increase of pressure, we observed that the 13 nm PbTe nanocrystals start a phase transformation from rocksalt structure to an intermediate orthorhombic structure and finally CsCl-type structure at 8 GPa, which is 2 GPa higher than that in bulk PbTe. In contrast, the 5 nm PbTe nanocrystals do not display the same type of transition with a further increased transition pressure as expected. Instead of orthorhombic or CsCl-type structure, the 5 nm PbTe nanocrystals turn to amorphous phase under a similar pressure (8 GPa). Upon a release of pressure, the 13 nm PbTe nanocrystals transform from high pressure CsCl-type structure directly to rocksalt structure, whereas the 5 nm PbTe nanocrystals remain their amorphous phase to ambient conditions. The structure stability of rocksalt-type PbTe shows a significant reversal of Hall-Petch effect. On the basis of such an observation with a critical size determination of ~9 nm, PbTe nanocrystals appear as the first class of material that demonstrates a pressure-induced structural change from order to disorder. By sharing the insight of this reversed Hall-Petch effect with associated transition types, we tuned our experimental protocol and successfully synthesized a sample with "high-pressure metastable structure", amorphous phase at ambient pressure. This integrative study provides a feasible pathway to understand nucleation mechanism as a function of particle size and to explore novel materials with high-pressure metastable structure and unique properties under lab-accessible conditions.  相似文献   

17.
Nanoscale wires of silicon oxide, and silicon oxide with embedded gold-silicide nanospheres, are synthesized by heating of a gold-coated silicon wafer at temperatures of 1000 degrees C or above, with the resulting wires having diameters ranging from 30 to 150 nm and lengths of approximately 1 mm. This simple fabrication process should make possible economical bulk production of nanowires. Studies indicate that the growth of these gold-silica composite nanowires occurs directly on the silicon wafer by a solid-liquid-solid mechanism.  相似文献   

18.
The results of structural and luminescent study of porous Si prepared by electrochemical etching and containing the pores of micron sizes are presented. The samples demonstrate bright luminescence with external quantum efficiency of 15–20%. Raman scattering spectra contain only one line corresponding to bulk silicon. Atomic force microscopy image shows the structural elements essentially larger than quantum confinement crystallites. However, X-ray diffraction measurements demonstrate the presence of strained Si quantum confinement nanowires. It is shown that the recombination through interface oxide-related centers of the carriers excited due to light absorption in quantum confinement nanowires gives an essential contribution to emission spectra.  相似文献   

19.
Spinel cobalt ferrite nanowires were successfully prepared in mesoporous silica SBA-15 as a host matrix followed by slow thermal decomposition of the precursors inside the silica-based template. The formation and phase control of as-synthesized nanostructured cobalt ferrites were confirmed by X-ray diffraction (XRD) measurements at different annealing temperatures ranging from 500 to 1000 °C. The one-dimensional spinel nanostructures were identified by recording the transmission electron microscopy (TEM) images after a selective removal of the silica template in aqueous solution of NaOH. The final product was also characterized using infrared spectroscopy (FT-IR) and vibration sample magnetometer (VSM). The presence of SBA-15 lowers the formation temperature of cobalt ferrite nanowires compared to the corresponding bulk material. The nanowires annealed up to 700 °C exhibited magnetic behavior characteristic for soft magnetic materials, whereas samples annealed at temperature higher than 700 °C revealed magnetic behavior characteristic for hard magnetic materials with rectangular form and large coercive field.  相似文献   

20.
There has been considerable interest in the synthesis of new nitrides because of their technological and fundamental importance. Although numerous metals react with nitrogen there are no known binary nitrides of the noble metals. We report the discovery and characterization of platinum nitride (PtN), the first binary nitride of the noble metals group. This compound can be formed above 45-50 GPa and temperatures exceeding 2,000 K, and is stable after quenching to room pressure and temperature. It is characterized by a very high Raman-scattering cross-section with easily observed second- and third-order Raman bands. Synchrotron X-ray diffraction shows that the new phase is cubic with a remarkably high bulk modulus of 372(+/-5) GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号