首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Materials Letters》2006,60(15):1805-1808
Ternary pyrite sulfide Co1−xFexS2 (0  x  1) with various morphologies were synthesized at low temperature via solvothermal process with ethanol as the solvent. Cobalt and iron nitrates were used as starting chemicals, and thiourea as a source of sulfur. Microstructures and magnetic properties were investigated by X-ray diffraction, scanning electron microscope and SQUID magnetization measurements. With the same synthetic condition, the morphology is strongly dependent on Fe doping level x. The grain shape varies from nanoscaled sphericity to round nanorods and finally to rectangle rods with increasing x. Magnetic measurement shows a clear ferromagnetic–paramagnetic transition for the samples with x  0.5. Broad magnetic phase transition and unsaturated magnetization under high external field are observed, which is due to small grain size. CoS2 exhibits an effective paramagnetic moment of 1.7 μB per Co2+, indicative of spin-only electronic structure.  相似文献   

2.
Single phase Sn1?xFexO2 (x = 0.1, 0.3 and 0.5) nanoparticles having size in the range 9–17 nm were prepared by a chemical route. XRD analysis of the samples confirmed the formation of cassiterite phase without any impurity. The nanocrystalline nature of the samples and their crystallinity were confirmed by TEM measurements. Raman and Mössbauer spectroscopy studies indicate structural disorder and vacancies in the nanostructures. MH and MT data recorded by a SQUID magnetometer show that the samples are essentially paramagnetic with a weak ferromagnetic component. Ferromagnetism is argued to be associated with the vacancies and defects present in the grain boundaries and interfaces of the nanoparticles.  相似文献   

3.
The oxynitridation of biomedical titanium metal under a precisely regulated oxygen partial pressure (PO2) of 10? 14 Pa in nitrogen atmosphere at 973 K for 1 h strongly enhanced apatite formation compared with that on Ti heated in air. The factors governing the high apatite-forming ability are discussed from the viewpoint of the surface properties of Ti heated under a PO2 of 10? 14 Pa in nitrogen atmosphere determined from X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and zeta potential measurements. Nitrogen (N)-doped TiO2 (interstitial N) was formed on pure Ti heated under a PO2 of 10? 14 Pa in nitrogen atmosphere at 973 K. The XPS O1s main peak shifted toward a lower binding energy upon heating under a PO2 of 10? 14 Pa. This shift may be due to the formation of oxygen vacancies. This Ti surface had a positive zeta potential of approximately 20 mV. According to time-of-flight secondary ion mass spectroscopy results, PO43 ? ions were predominantly adsorbed on Ti soaked in simulated body fluid (SBF) after heat treatment, followed by calcium ions. It was concluded that the apatite formation kinetics can be described using the Avrami–Erofeev equation with an Avrami index of n = 2, which implies the instantaneous nucleation of apatite on the surface of Ti soaked in SBF after heat treatment at 973 K under a PO2 of 10? 14 Pa.  相似文献   

4.
The novel Fe/Nb co-substituted SrCo1?2x(Fe,Nb)xO3?δ (x = 0.05, 0.10) oxides have been synthesized and characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry (TG), and scanning electron microscopy (SEM). The XRD and DSC results demonstrate that the structural stability of the Fe/Nb co-substituted samples x = 0.05, 0.10 is improved greatly compared to the sample x = 0.00. The Fe/Nb co-doping in the SrCoO3?δ oxide results in the improved structural stability of the SrCo1?2x(Fe,Nb)xO3?δ (x = 0.05, 0.10) oxides. The nonstoichiometric and sintering properties were investigated by TG and SEM, and the oxygen permeation fluxes were measured at 800–950 °C for the sample x = 0.10. The improved oxygen permeability of the ceramic SrCo1?2x(Fe,Nb)xO3?δ (x = 0.10) membrane compared to the (Ba0.5Sr0.5)(Co0.8Fe0.2)O3?δ and SrCo0.8Fe0.2O3–δ membranes, was observed under an air/He oxygen partial pressure gradient at 800–950 °C.  相似文献   

5.
Magnesium-doped zinc oxide phosphors with the formula of MgxZn1?xO were synthesized by sol–gel method, and the crystal structure and luminescent properties were investigated by means of XRD, SEM, FTIR, Raman spectrum, EPR, DRS and PL. The results indicated that the materials consisting of MgxZn1?xO particles exhibit good crystallinity and the particle size varies with the calcining temperature. An obvious blue shift of excitation band was observed in samples as the doping concentration was increased from 5 at% to 10 at%. The optimal concentration for obtaining the highest photoluminescent intensity for MgxZn1?xO phosphors was 10 at% (calcined at 875 °C for 3 h). Raman and EPR results suggested that the red emission of Mg-doped ZnO phosphors was attributed to zinc vacancies and oxygen vacancies.  相似文献   

6.
Binary solid-solutions of the (1 ? x)Ba(Zr0.07Ti0.93)O3xBa(Fe0.5Nb0.5O3) system, with 0.1  x  0.9,were fabricated via a solid-state processing technique. X-ray diffraction analysis revealed that all samples exhibited a single perovskite phase. The BaFe0.5Nb0.5O3 also promoted densification and grain growth of the system. Dielectric measurements showed that all samples displayed a relaxor like behavior. The x = 0.1 sample presented a dielectric-frequency and temperature with low loss tangent (<0.07 at 10 kHz). For x > 0.2 samples, the dielectric data showed a broad dielectric constant–temperature curve with a giant dielectric characteristic. In addition, a high dielectric constant > 50,000 (at 10 kHz and temperature > 150 °C) was observed for the x = 0.9 sample.  相似文献   

7.
Transparent glass ceramics, synthesized from melt quenching followed by heat treatment, of the composition 10Na2O–30PbO–10Bi2O3–(50  x)SiO2:xCr2O3 (mol%), where 0  x  0.5, were characterized with XRD, DTA, SEM and EDS. Physical and spectroscopic studies, viz., optical absorption, electron paramagnetic resonance (EPR), FTIR and Raman were investigated. The characterization of the host glass ceramic has revealed that the formation of a major phase of sodium silicate along with two minor phases such as lead silicate and bismuth oxide. By integrating Cr2O3 to the host glass additional crystal phases viz., NaCrO2, Na2Cr2O7 and Pb(CrO4) which are the complexes of Cr3+ and Cr6+ ions were also developed. As the concentration of nucleating agent is increased, a part of the Cr6+ ions is found to reduce in to Cr3+ ions. Spectroscopic studies have revealed that with an increase in the concentration of Cr2O3 from 0.1 to 0.5 mol%, there is a gradual increase in the intensity of vibrational modes of various asymmetric structural units of silicate, bismuthate and chromate in the glass ceramic network at the expense of symmetrical structural units. The analysis of the results of these studies has indicated that in the samples containing higher concentration of Cr2O3, chromium ions exists predominantly in Cr3+ state and occupy the octahedral positions in glass ceramic matrix and such glass ceramic samples are suitable for lasing action.  相似文献   

8.
《Materials Research Bulletin》2006,41(9):1646-1656
This paper reports the interesting results on mixed alkali effect (MAE) in xLi2O–(30-x)Na2O–69.5B2O3 (5  x  28) glasses containing Fe2O3 studied by electron paramagnetic resonance (EPR) and optical absorption techniques. The EPR spectra in these glasses exhibit three resonance signals at g = 7.60, 4.20 and 2.02. The resonance signal at g = 7.60 has been attributed to Fe3+ ions in axial symmetry sites whereas the resonance signal at g = 4.20 is due to isolated Fe3+ ions in rhombic symmetry site. The resonance signal at g = 2.02 is due to Fe3+ ions coupled by exchange interaction. It is interesting to observe that the number of spins participating in resonance (N) and its paramagnetic susceptibility (χ) exhibits the mixed alkali effect with composition. The present study also gives an indication that the size of alkali ions we choose in mixed alkali glasses is also an important contributing factor in showing the mixed alkali effect. It is observed that the variation of N with temperature obeys Boltzmann law. A linear relationship is observed between 1/χ and T in accordance with Curie–Weiss law. The paramagnetic Curie temperature (θp) is negative for the investigated sample, which suggests that the iron ions are antiferromagnetically coupled by negative super exchange interactions at very low temperatures. The optical absorption spectra exhibit only one weak band corresponding to the transition 6A1g(S)  4A1g(G); 4Eg(G) at 446 nm which is a characteristic of Fe3+ ions in octahedral symmetry.  相似文献   

9.
The Zn1?xMnxCr2Se4 crystals were prepared by chemical vapor transport in closed silica tubes using ZnSe and MnSe with CrCl3 as the transport agent. Four crystals with different Mn content (x = 0.12, 0.13, 0.18 and 0.24) were studied by X-ray photoelectron spectroscopy (XPS) and magnetic measurements in order to determine influence of manganese on their magnetic and electronic properties. The XPS revealed no change of chemical shifts of Cr core lines indicating a Cr3+ (3d3) electronic configuration. Magnetization measurements revealed a systematic increase in saturation magnetic moments from 6.32 μB/mol for x = 0.12 to 7.63 μB/mol for x = 0.24, as well as effective paramagnetic Bohr magneton numbers from 4.87 μB/mol for x = 0.12 to 6.91 μB/mol for x = 0.24.  相似文献   

10.
《Materials Research Bulletin》2013,48(4):1415-1419
Nanocrystalline samples of NixCo1xFe2O4, where x = 1, 0.8, 0.6, 0.4, 0.2 and 0, were synthesized by chemical co-precipitation method. The spinel cubic phase formation of Ni–Co ferrite samples was confirmed by X-ray diffraction (XRD) data analysis. All the Bragg lines observed in XRD pattern belong to cubic spinel structure of ferrite. Scanning Electron Microscopy (SEM) technique was used to study the surface morphology of the Ni–Co ferrite samples. Nanocrystalline size of Ni–Co ferrite series was observed in SEM images. Pellets of Ni–Co ferrite were used to study the electrical and dielectric properties. The resistivity measurements were carried out on the samples in the temperature range 300–900 K. Ferrimagnetic to paramagnetic transition temperature (Tc) for all samples was noted from resistivity data. The activation energy below and above Tc was calculated. The dielectric constant (ɛ′) measurements with increasing temperature show two peaks in the temperature range of measurements for all samples under investigation. The peaks observed show frequency and compositional dependences as a function of temperature. Electrical and dielectric properties of nanocrystalline NixCo1xFe2O4 samples show unusual behavior in temperature range of 500–750 K. To our knowledge, nobody has discussed such anomalies for nanocrystalline NixCo1xFe2O4 at high temperature. Here, we discuss the mechanism responsible for electrical and dielectric behavior of nanocrystalline NixCo1xFe2O4 samples.  相似文献   

11.
A series of Ga-containing phospho-silicate glasses based on Bioglass 45S5, having molar formula 46.2SiO2·24.3Na2O·26.9CaO·2.6P2O5·xGa2O3 (x = 1.0, 1.6, 3.5), were prepared by fusion method. The reference Bioglass 45S5 without gallium was also prepared. The synthesized glasses were immersed in simulated body fluid (SBF) for 30 days in order to observe ion release and hydroxyapatite (HA) formation. All Ga-containing glasses maintain the ability of HA formation as indicated by main X-ray diffractometric peaks and/or electronic scanning microscopy results. HA layer was formed after 1 day of SBF soaking in 45S5 glass containing up to 1.6% Ga2O3 content. Moreover, gallium released by the glasses was found to be partially precipitated on the glass surface as gallium phosphate. Further increase in gallium content reduced the ion release in SBF. The maximum of Ga3+ concentration measured in solution is ~ 6 ppm determined for 3.5% Ga2O3 content. This amount is about half of the toxic level (14 ppm) of gallium and the glasses release gallium till 30 days of immersion in SBF. Considering the above results, the studied materials can be proposed as bioactive glasses with additional antimicrobial effect of gallium having no toxic outcome.  相似文献   

12.
The in vitro apatite-forming ability of experimental calcium-silicate hydraulic cements designed for dentistry was investigated.Two cements containing di- and tricalcium-silicate (wTC and wTC-TCP, i.e. wTC added with alpha-TCP) were soaked in different phosphate-containing solutions, namely Dulbecco's Phosphate Buffered Saline (DPBS) or Hank's Balanced Salt Solution (HBSS), at 37 °C and investigated over time (from 24 h to 6 months) by SEM/EDX, micro-Raman and ATR-FTIR.The early formation (24 h) of an aragonite/calcite layer onto both cements in both media was observed. Calcium phosphate deposits precipitated within 1–3 days in DPBS; spherical particles (spherulites) of apatite appeared after 3–7 days. wTC-TCP cement showed earlier, thicker and more homogeneous calcium phosphate deposits than wTC.In HBSS calcite deposits were mainly noticed, while phosphate bands appeared only after 7 days; the presence of globular deposits after 14–28 days was mostly detected on wTC-TCP.After 6 months, an approx. 900 micron carbonated apatite layer formed in DPBS whilst a 150–350 micron thick calcite/apatite layer generated in HBSS. Also in HBSS the carbonated apatite coating was earlier and thicker on wTC-TCP than wTC.Calcium-silicate cements showed the formation of a bone-like apatite layer, depending on the medium composition and ageing time. The addition of alpha-TCP increases the apatite-forming ability of calcium-silicate cements.Calcium-silicate hydraulic cements doped with alfa-TCP represent attractive materials to improve apical bone healing.  相似文献   

13.
The LixNi0.23Co0.12Mn0.65O2 electrode system with various compositions (x = 1.19, 1.33, 1.46, 1.58) was synthesized from a metal oxide precursor synthesized by co-precipitation method. The XRD patterns of the prepared powders revealed a hexagonal α-NaFeO2 structure (space group: R-3m, 166) and the existence of a Li2MnO3 phase in the composite structure. In particular, the low Li content sample shows a three integrated structure (spinel, Li2MnO3, LiMO2) for a Li/Metal(Ni/Co/Mn) mol ratio of 1.2. Scanning electron microscopy showed that all the synthesized samples contained spherical agglomerates with a size of 8–10 μm. Among the samples tested, Li1.46Ni0.23Co0.12Mn0.65O2 shows relatively high charge and discharge capacity for the first cycle is 287, 192.9 mA h g?1, respectively. Also, charge transfer resistance was also significantly improved compare with other samples.  相似文献   

14.
The thermal expansion and conductivities have been investigated for Co3+ doped lanthanum silicates. The apatite-type lanthanum silicates with formula La10Si6?xCoxO27?x/2 (x = 0.2, 0.4, 0.6, 0.8, 1.0, 1.5) were synthesized by sol–gel process. The thermal expansion coefficient (TEC) of La10Si6?xCoxO27?x/2 was improved with increasing cobalt content because of the lower valence and larger radius of Co3+ ion compared to Si4+. Analysis of AC impedance spectroscopy showed that conductivity increased first and then decreased with increasing cobalt content. There is an optimum doping amount of cobalt and La10Si5.2Co0.8O26.6 exhibits the highest conductivity of 3.33 × 10?2 S/cm at 800 °C. When x  0.8, the local distortion caused by doping with Co3+ can significantly affect the oxygen channels and assist the migration of the interstitial oxide ions, resulting in the improvement of ionic conductivity. However, excess Co3+ dopant (0.8 < x  1.5) reduced the number of interstitial oxide ions and decreased the conductivity.  相似文献   

15.
A series of zirconate compounds with the general formula Sm2–xLaxZr2O7 (0 ? x ? 1.0) were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, structure and electrical conductivity of Sm2–xLaxZr2O7 ceramics were investigated by the Archimedes method, X-ray diffraction and impedance spectroscopy measurements. Sm2–xLaxZr2O7 (0 ? x ? 1.0) ceramics exhibit a pyrochlore-type structure. The measured electrical conductivity of Sm2–xLaxZr2O7 ceramics obeys the Arrhenius relation and gradually increases with increasing temperature from 673 to 1173 K. Sm2–xLaxZr2O7 ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0 × 10?4 to 1.0 atm at all test temperature levels. The electrical conductivity of Sm2–xLaxZr2O7 ceramics decreases with increasing lanthanum content at identical temperature levels.  相似文献   

16.
A few compositions of perovskite oxide BaSn1?xNbxO3 (with x  0.10) system, prepared by solid state ceramic method, have been studied employing XPS and Mössbauer spectroscopy techniques. Mössbauer spectra of these compositions in the temperature range of 78–300 K reveal that the oxidation state of Sn is +4. In XPS measurements, compositions with x  0.010 show no evidence of Nb5+ signal whereas the compositions with x  0.050 show clear evidence of Nb5+ signals indicating some unreacted Nb2O5 component in the system. This confirms the earlier report where presence of small amount of unreacted Nb2O5 was predicted.  相似文献   

17.
《Materials Research Bulletin》2013,48(11):4884-4888
Ca3Co4–xCuxO9 + δ (x = 0.00, 0.05, 0.07, 0.10 and 0.15) samples were prepared by conventional solid-state synthesis and their thermoelectric properties were systematically investigated. The thermopower of all the samples was positive, indicating that the predominant carriers are holes over the entire temperature range. Ca3Co3.85Cu0.15O9 + δ had the highest power factor of 2.17 μW cm−1 K−2 at 141 K, representing an improvement of about 64.4% compared to undoped Ca3Co4O9 + δ. Magnetization measurements indicated that all the samples exhibit a low-spin state of cobalt ions. The observed effective magnetic moments decreased with increasing copper content.  相似文献   

18.
Superhydrophilic ZrO2 nanotube layer was prepared by anodic oxidation of commercial pure Zr in aqueous solutions containing 1 M (NH4)2SO4 and 0.15 M NH4F. The effect of annealing and ultraviolet (UV) irradiation treatment on the microstructure, water contact angle and bioactivity of the ZrO2 nanotube layer was investigated. The as-anodized nanotube layer consists of cubic and amorphous ZrO2, no apatite crystals are deposited on its surface even after immersion in simulated body fluids (SBF) for 30 days, exhibiting weak apatite-inducing ability. After annealing at 450 °C for 3 h, the nanotube layer is composed of cubic and monoclinic ZrO2, and its apatite-forming ability is significantly enhanced because of its lattice structure matching that of apatite, apatite can be induced after immersion in SBF for 15 days. UV irradiation of the ZrO2 nanotube layers does not alter their surface morphologies and phase components, however, can improve the bioactivity only when the ZrO2 nanotube layer is well crystallized. The enhanced bioactivity by UV irradiation is thought to result from the abundant basic ZrOH groups on the crystallized ZrO2 nanotube layer. Annealing and UV irradiation treatment do not alter the superhydrophilic nature of the ZrO2 nanotubes.  相似文献   

19.
《Materials Research Bulletin》2013,48(11):4606-4613
The effect of Fe and Co doping on structural, electrical and thermal properties of half doped La0.5Ce0.5Mn1−x(Fe, Co)xO3 is investigated. The structure of these crystallizes in to orthorhombically distorted perovskite structure. The electrical resistivity of La0.5Ce0.5MnO3 exhibits metal-semiconductor transition (TMS at ∼225 K). However, La0.5Ce0.5Mn1−xTMxO3 (TM = Fe, Co; 0.0  x  0.1) manganites show semiconducting behavior. The thermopower measurements infer hole as charge carriers and electron–magnon as well spin wave fluctuation mechanism are effective at low temperature domain and SPC model fits the observed data at high temperature. The magnetic susceptibility measurement confirms a transition from paramagnetic to ferromagnetic phase. The observed peaks in the specific heat measurements, shifts to lower temperatures and becomes progressively broader with doping of transition metals on Mn-site. The thermal conductivity is measured in the temperature range of 10–350 K with a magnitude in between 10 and 80 mW/cm K.  相似文献   

20.
《Materials Research Bulletin》2013,48(11):4618-4627
Multi-component glasses of the chemical composition 19.5Li2O–20PbO–20B2O3–30SiO–(10  x)Bi2O3–0.5MnO:xGa2O3 with 0  x  5.0 have been synthesized. Spectroscopic (optical absorption, IR, Raman and ESR) and dielectric properties were investigated. Optical absorption and ESR spectral studies have indicated that managanese ions do exist in Mn3+ state in addition to Mn2+ state in the samples containing low concentration of Ga2O3. The IR and Raman studies indicated increasing degree of disorder in the glass network with the concentration of Ga2O3 up to 3.0 mol%. The dielectric constant, loss and ac conductivity are observed to increase with the concentration of Ga2O3 up to 3.0 mol%. The quantitative analysis of the results of dielectric properties has indicated an increase in the insulating strength of the glasses as the concentration of Ga2O3 is raised beyond 3.0 mol%. This has been attributed to adaption of gallium ions from octahedral to tetrahedral coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号