首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以四水合硫酸高铈(Ce(SO_4)_2·4H_2O)为配位交联剂,采用原位法制备丁腈橡胶(NBR)/Ce(SO_4)_2·4H_2O复合材料,并利用差示扫描量热分析(DSC)、热重分析(TGA)、溶胀平衡法、扫描电子显微镜(SEM)、硫化仪和万能试验机对其进行结构表征和性能测试。结果表明,Ce(SO_4)_2·4H_2O与NBR发生了配位交联反应,配位硫化为一级反应,活化能为14.4kJ/mol;NBR/Ce(SO_4)_2·4H_2O硫化胶具有良好的力学性能,Ce(SO_4)_2·4H_2O起配位交联和补强填充的作用。配位交联硫化体系具有配方精炼、工艺简单的优点,在特定领域将配位交联NBR替代传统共价交联NBR具有可行性。  相似文献   

2.
RTM专用双马来酰亚胺树脂体系化学流变特性   总被引:17,自引:7,他引:17       下载免费PDF全文
进行了RTM 工艺专用双马来酰亚胺(BMI) 树脂体系的化学流变特性及工艺过程研究。采用DSC 热分析技术和粘度测量手段, 研究了该树脂体系固化特性以及固化过程中粘度与温度的关系, 根据对等温粘度曲线的分析, 建立了双阿累尼乌斯粘度模型和工程粘度模型。对比所建立的两种粘度模型, 结果显示两种模型都可以适用于RTM 工艺注射阶段, 工程模型在粘度转折点附近的预测精度要优于双阿累尼乌斯粘度方程。同时建立了恒温温度-凝胶时间之间的数学关系。验证了所建立的工程模型在工程中的实用性, 并指出了工程粘度模型的使用范围在固化体系交联结构形成之前, 所建立的工程粘度模型能够有效地预测体系RTM 工艺的粘度变化和工艺过程, 为复合材料成型工艺模拟分析以及工艺参数的准确制定奠定了基础。   相似文献   

3.
The encapsulation kinetics of short glass fibers (GFs) by polyamide 6 (PA6) during their melt compounding with polystyrene (PS) was studied. The encapsulation correlates to the mechanical strength of the ternary PS/PA6/GF (50/21/29) composites at temperatures higher than the Tg of the PS matrix. It was observed that many fibers are “welded” together by the minor PA6 phase, and a continuous GF-PA6 network is formed throughout the PS matrix. As a result, the elastic modulus is enhanced remarkably over a wide temperature region from the Tg of PS to the Tm of PA6, and the heat distortion temperature of the composites increases significantly up to 201 °C. We verified that the bulk strength of the GF-PA6 network depends on the encapsulation ratio, NPA6, a parameter denoting the percentage of the PA6 phase encapsulating the fibers. As mixing time increases, NPA6 increases gradually and then remains constant. The PA6 with a lower viscosity shows a rapid increase in NPA6, but a larger difference in viscosity between PA6 and PS results in a higher saturating value. A remarkable increase in NPA6 was observed for samples after isothermal post-treatments. It was concluded that the encapsulation of the GF by polymers and the strength of the GF-PA6 networks are kinetically determined by the migration of the dispersed PA6 domains to the GF surface and the preferential segregation of these PA6 domains to the junction point of fibers under the driving force of capillarity.  相似文献   

4.
A tetrafunctional epoxy resin was modified using CO2 fixation process in the presence of tetra-n-butyl ammonium bromide as catalyst. The unmodified tetrafunctional epoxy resin (UMTE) and CO2 fixated modified tetrafunctional epoxy resin (CFMTE) were cured by diethylenetriamine. A bifunctional glycidyl ether compound was used as a reactive diluent to control the viscosity of CFMTE. The activation energy of curing reaction was computed using the advanced integral isoconversional method. The activation energy, which depends on the conversion, was considerably changed due to the CO2 fixation process. The thermal stability parameters including the initial degradation temperature, the temperature at the maximum rate of weight loss (T max), and the decomposition activation energy (E d) were determined by thermal gravimetry. Dynamic mechanical thermal analysis measurements showed that the CO2 fixation decreases the T g of the epoxy resin. The surface morphology of UMTE and CFMTE were determined by scanning electron microscope. It is concluded that CO2 fixation reaction improves the properties of tetrafunctional epoxy resin.  相似文献   

5.
采用流变仪对酚酞聚芳醚酮(PEKC)-双马来酰亚胺(BMI)树脂体系的流变特性的时间和温度依赖性进行了研究, 发现: BMI树脂凝胶点对频率有依赖性, 而tanδ对频率无依赖性; PEKC-BMI复合树脂体系的黏度增大主要是由于BMI对PEKC的溶解与BMI的热固化。相比较110℃和130℃两种条件, 在较高温度时复合树脂体系的黏度增大主要是热固化的影响; 随注胶温度提高, 复合体系的凝胶时间随PEKC含量的增加而快速缩短, 在较高注胶温度下凝胶模量增大较慢, 在较低注胶温度下凝胶时模量随PEKC含量的增加而提高较快; 随着复合树脂体系中PEKC含量的增加, 该体系的凝胶活化能由4.9 kJ/mol增大到65.9 kJ/mol, 表明该体系的凝胶化作用对温度的敏感性增大。  相似文献   

6.
双酚A型环氧树脂/催化型固化剂体系的粘度模型   总被引:3,自引:0,他引:3       下载免费PDF全文
研究了催化型固化剂用量对双酚A型环氧树脂体系粘度变化的影响规律。根据对树脂固化特性和等温粘度曲线的分析,建立了树脂体系的工程粘度模型。该模型能够有效地预测体系的粘度-时间-温度关系,反映了固化剂用量对固化过程中体系粘度变化的影响规律,为复合材料成型工艺模拟分析及工艺参数的准确制定奠定了基础。   相似文献   

7.
Soybean oil-based thermosets from acrylated epoxidized soybean oil (AESO) with a highly reactive vinyl monomer, N-vinyl-2-pyrrolidone (NVP), as crosslinking agent to replace styrene (St) were formulated for the fabrication of hemp fiber composites. The theoretical miscibility of NVP–AESO and St–AESO systems were discussed based on the group contribution method. The AESO resin with 30 wt% NVP exhibited a slightly higher viscosity than the counterpart with St, while the maximum curing temperature of the former was considerably lower than that of the latter. The composites from 20 wt% NVP resin gained comparable mechanical properties and higher glass transition temperature (Tg) to the composites with 30 wt% St. Further increase in NVP usage to 40 wt% resulted in the composites with higher tensile strength, tensile modulus, flexural strength, flexural modulus, storage modulus, and Tg of 29.6%, 22.4%, 22.5%, 20.6%, 21.6%, and 47.2%, respectively, when compared to those of the St-based composites.  相似文献   

8.
通过粘度、凝胶含量和XRD等手段研究了聚碳硅烷(PCS)纺丝原液的干法纺丝性能和干纺PCS纤维的自交联过程, 并对所制得的低氧含量SiC纤维的组成、结构和性能进行了表征. 结果表明, PCS/二甲苯纺丝原液的最佳纺丝粘度范围在18.0~22.0Pa·s; 干纺PCS纤维在烧成温度超过250℃后开始发生自交联反应, 在烧成温度超过550℃后, 干纺PCS纤维完全交联形成了“不熔不溶”的网状结构; 干法纺丝法制备得到的SiC纤维与空气不熔化法制得的SiC纤维相比, 氧含量大幅降低, 仅在3.6wt%左右, 结晶度较高, 其耐高温抗氧化性也有明显的改善.  相似文献   

9.
Abstract

The addition of chromium acetylacetonate in N, N, N’, N’, tetraglycidyl diaminodiphenyl methane/diaminodiphenyl sulfone/boron trifluoride‐monoethylene amine epoxy formulations for manufacturing unidirectional Gr/Ep laminates accelerated the curing reaction and increased the viscosity of resin during lamination. Differential scanning calorimetric and infrared spectroscopic results indicated that Cr(acac)3 acted like a cocatalyst with BF3MEA during curing. As the laminates were cured, the one incorporating 1 mol% Cr(acac)3 exhibited the highest GIC fracture toughness, flexural strength, and transverse tensile strength. The increased mechanical strength of the Gr/Ep laminates was due to the fact that the cohesive strength of the epoxy matrix was increased by the incorporated Cr(acac)3.  相似文献   

10.
Poly(4-vinylpyridine) (P4VP) was used as the macromolecular curing agent to prepare epoxy networks. The crosslinking structures were investigated by means of Fourier transform infrared spectroscopy (FTIR). It is identified that depending on the ratios of DGEBA to P4VP, different reactions dominated the formation of the crosslinking networks, which were involved the formation of pyridone (or cyclic amide) resulting from epoxide groups of DGEBA and pyridine rings of P4VP, the Diels-Alder reaction of in situ formed conjugated 3,5-diene in a 6-member ring and the homopolymerization of DGEBA initiated by pyridine moiety of P4VP. Differential scanning calorimetry (DSC) showed that all the DGEBA-P4VP co-crosslinked thermosets displayed single glass transition temperature (Tg), suggesting that the crosslinked networks are homogenous. In addition, it is noted that the Tg's of the DGEBA-rich network are greatly dependent on the molecular weight of P4VP used.  相似文献   

11.
E 51环氧树脂固化反应中动力学转变   总被引:3,自引:0,他引:3  
采用等温DSC法研究了E-51环氧树脂与4, 4’-二氨基二苯基砜(DDS)体系的固化反应过程, 并与已有固化模型拟合得到了170、180、190、200 ℃下的等温固化反应动力学的参数, 根据决定系数R2确定了适合的固化模型。研究表明: 当固化度小于40%时属于Kamal自催化模型; 当固化度大于40%时属于n级固化模型, 即固化反应由Kamal自催化反应向n级反应转变。   相似文献   

12.
In order to more precisely define the characteristics of heat transfer under conditions of protection of firing wall by means of tangential injection in the case of its high temperature (in particular, higher-thanadiabatic temperature) and to assess the effect of degree of turbulence of the incoming gas flow on heat transfer, a numerical investigation is performed under conditions of parameters typical of combustors of gas-turbine plants (GTP) with high parameters of the working medium. In so doing, the heat flux distribution, the profiles of turbulence intensity, the distribution of turbulent viscosity in the injection zone region under study, and other characteristics are determined. The low-Reynolds k-ε model with wall functions and a new model of turbulent viscosity without wall functions are employed. It is found that a maximum of turbulent viscosity takes place behind the exit section of the injection slit with a shift to the main flow under conditions of tangential injection on an isothermal surface with a temperature much in excess of injection temperature (in a more general case, T w > T ad). This causes impairment of heat protection by injection, i.e., an increase in heat fluxes in the computational domain compared to heat fluxes calculated using integral methods.  相似文献   

13.
Glutaraldehyde as a crosslinking agent for collagen-based biomaterials   总被引:5,自引:0,他引:5  
The formation of Schiff bases during crosslinking of dermal sheep collagen (DSC) with glutaraldehyde (GA), their stability and their reactivity towards GA was studied. All available free amine groups had reacted with GA to form a Schiff base within 5 min after the start of the reaction under the conditions studied (0.5% (w/w) GA). Before crosslinks are formed the hydrolysable Schiff bases initially present were stabilized by further reaction with GA molecules. An increase in shrinkage temperature (T s) from 56°C for non-crosslinked DSC (N-DSC) to 78°C for GA crosslinked DSC (G-DSC) was achieved after crosslinking for 1 h. From the relationship between the free amine group content and the T s during crosslinking it was concluded that higher GA concentrations and longer reaction times will result in the introduction of pendant-GA-related molecules rather than crosslinks. After 24 h crosslinking an average uptake of 3 GA molecules per reacted amine group was found. No increase in the tensile strength of the materials was observed after crosslinking, which may be a result of formation of crosslinks within the fibres rather than in between fibres. Aligning of the fibres by applying a pre-strain to the samples and subsequent crosslinking yielded materials with an increased tensile strength.  相似文献   

14.
将聚碳硅烷(PCS)纤维在1-己炔气氛中进行化学气相交联不熔化处理, 与空气不熔化相比, 能大大降低纤维的氧含量。PCS纤维在1-己炔气氛中反应, 其组成和结构都发生了变化。结果表明, 在1-己炔气氛中, PCS分子的Si—H键的反应程度和纤维的凝胶含量随温度的升高而逐渐增加。反应机制为1-己炔受热引发PCS分子中的Si—H和Si—CH3键断裂生成Si自由基和Si—CH2自由基, 促进PCS分子间形成Si—CH2—Si交联结构, 最终实现不熔化。反应中有少量己基引入到PCS分子结构中。制得的SiC纤维拉伸强度达到2.79 GPa, 氧含量降低到5wt%~6wt%, 并且纤维的耐高温性能明显优于Nicalon纤维。在Ar气中处理至1300℃, 纤维强度保留率约为80%, 处理至1400℃, 纤维的强度保留率为60%, 并且在1300~1600℃的处理过程中, 纤维中β-SiC微晶的晶粒尺寸变化只有2.18nm。   相似文献   

15.
Grain growth behaviour of the nanocrystalline CoAl intermetallic compound synthesized by mechanical alloying has been studied by isothermal annealing at different temperatures and durations. X-ray diffraction method was employed to investigate structural evolutions during mechanical alloying and annealing processes. The disordered CoAl phase with the grain size of about 6 nm was formed via a gradual reaction during mechanical alloying. The results of isothermal annealing showed that the grain growth behaviour can be explained by the parabolic grain growth law. The grains were at nanometric scale after isothermal annealing up to 0·7 T m. The grain growth exponent remained constant above 873 K indicating that grain growth mechanism does not change at high temperatures. The calculated activation energy indicated that the grain growth mechanism in the disordered CoAl phase at high temperatures was diffusing Co and Al atoms in two separate sublattices. Furthermore, an equation has been suggested to describe the grain growth kinetics of nanocrystalline CoAl under isothermal annealing at temperatures above 873 K (T/T m ≥ 0·5).  相似文献   

16.
为了预测在固化度、温度和固化放热共同作用下, 树脂体系的黏度随时间的变化, 提出了一种确定反应性树脂体系黏度随时间变化关系的新方法。该方法从等温黏度-时间曲线和固化度-时间曲线出发, 分别得到黏度-固化度关系和黏度-温度关系, 从而将影响反应性流体黏度变化的两个主要因素温度和固化程度分离开来。基于反应性树脂体系的局部绝热假设, 将反应性树脂体系的固化放热引入到黏度变化关系中, 得到反应性树脂体系黏度在固化度、温度和固化放热共同作用下的黏度-时间关系。黏度预测值与用旋转黏度计测量值的黏度变化趋势具有高度的一致性, 可以应用此方法实现对实际环境中考虑固化反应热效应的反应性树脂体系黏度的预测。   相似文献   

17.
Cyclohexene vapor, instead of air, is applied to cure polycarbosilane (PCS) fibers. The cured fibers are characterized by infrared (IR), electron spin resonance (ESR), elements analysis (EA) and simulated through the HyperChemTM program for comparison. The curing process is investigated by thermoanalysis. The results indicate that the Si–H and Si–CH3 bonds in PCS are induced by cyclohexene to cleavage and form Si-central radicals. A fully developed cross-linking fibers come into being through the combination of these radicals, and the byproducts, some cyclohexyls bonded onto PCS derived from cyclohexene, introduce the variations in IR spectra, weight gain and carbon contents increase of PCS. On the basis of investigation and simulation, a likely mechanism of curing reaction is presented.  相似文献   

18.
The viscosity behavior of (1 − x)NaPO3xNa2B4O7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na2B4O7. The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO4 units) to mixed BO4/BO3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network.  相似文献   

19.
We report the study of the effects of carbon nanofibers (CNFs) on the cure kinetics and on the chemorheology of unsaturated polyester resins (UP). Two main experimental techniques were utilized: differential scanning calorimetry and rheometry. Isothermal and dynamic tests were performed on the neat polyester resin and on two nanocomposite systems, with 0.5 and 1.0 wt.% of CNFs. Furthermore, a TGA study of the selected systems at different isothermal temperatures was performed to evaluate the styrene consumption and related loss rate during the curing process. Subsequently, a phenomenological model (autocatalytic approach) was applied to the experimental data, both in isothermal and dynamic conditions. In the case of dynamic curing, the evidence of multiple peaks in the heat flow curves was studied through the deconvolution of the overall reaction thermogram in single reaction steps. An empirical rheological model coupled with the reaction kinetics was successfully applied to simulate the viscosity changes of the UP matrix. Experimental and modelling results demonstrate the presence of a delay effect of the CNFs on the cure of the UP resin matrix.  相似文献   

20.
丙烯酸酯共聚物水溶胶/HDI齐聚物室温固化体系的固化过程认为是:共聚物侧链上的羟基和HDI齐聚物上的NCO基团进行反应,形成交联网络。抽提法和DSC研究了影响固化度的因素,固化度随固化剂用量增多而增大,当超过33%时,固化度趋于稳定。TEM观察到,水溶胶/HDI齐聚物的混合体系在微观上呈球状粒子形态,随着固化时间的延长,粒子边界变得模糊,成为无明显相分离的平面。化学分析法测定了固化过程中NCO含量随时间的变化,在固化反应的开始阶段NCO消耗较快,随后变得较为平缓。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号