首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nickel powder-filled Portland cement-based composite was prepared by adding nickel powder as functional filler into conventional Portland cement-based materials, and piezoresistive sensors were fabricated by embedding four loop electrodes in the nickel powder-filled Portland cement-based composite. The relationship between the fractional change in electrical resistivity and the stress/strain of piezoresistive sensors was established for the compressive stress and was found to be in the range from 0 to 12.5 MPa. Experimental results indicate that the electrical resistivity of nickel powder-filled Portland cement-based composite under uniaxial compression decreases by 62.6144% within elastic regime, which justifies the use of this composite in the fabrication of piezoresistive sensors with high sensitivity to stress and sensitivity to strain (gauge factor). The sensitivity of piezoresistive sensors to compressive stress is higher than 0.050092 MPa?1 and goes up to 0.123648 MPa?1. The gauge factor of piezoresistive sensors is higher than 895.450 and goes up to 1929.500. It is therefore concluded that the newly developed piezoresistive sensors have a high sensitivity to stress/strain, and they can be used for measurement of stress/strain or force/deformation.  相似文献   

2.
B.G.  Y.  B.Z.  J.P.   《Sensors and actuators. A, Physical》2008,147(2):536-543
A wireless stress/strain measurement system is developed by integrating with pressure-sensitive sensors for health monitoring of concrete structures. The pressure-sensitive stress/strain sensors are fabricated by using nickel powder-filled cement-based composite. The wireless stress/strain measurement system integrated with these sensors is tested with compressive stress/strain in the range from 0 MPa/0 μ to 2.5 MPa/311.5 μ for performance evaluation. Experimental results indicate that the electrical resistivity of pressure-sensitive nickel powder-filled cement-based stress/strain sensors changes linearly and reversibly with the compressive stress/strain, and its fractional change goes up to 42.719% under uniaxial compression. The relationship between input (compressive stress/strain) and output (the fractional change in electrical resistivity) of the wireless stress/strain measurement system integrated with pressure-sensitive sensors is Δρ = −0.16894σρ = −1336.5. The wireless stress/strain measurement system can be used to achieve a sensitivity to stress/strain of 16.894% MPa−1/0.13365%μ−1 (a gauge factor of 1336.5) and a stress/strain resolution of 150 Pa/0.02 μ. The newly developed wireless stress/strain measurement system integrated with pressure-sensitive nickel powder-filled cement-based sensors has such advantages as high sensitivity to stress/strain, high stress/strain resolution, simple circuit and low energy consumption.  相似文献   

3.
Piezoresistive composites with high hardness and conductivity are required for circuit breakers for multi-cycle operation under large current flow. Based on the simulation results for the mechanical behavior of piezoresistive composites, we developed piezoresistive composites with conductive TiB2 ceramic materials and silicone rubber. TiB2 up to 70 vol.% was embedded into the polymer matrix without any mechanical deterioration while the electrical resistance was decreased with increasing TiB2 content. Piezoresistive composites with 70 vol.% TiB2 particles exhibited a resistance of 1.7 Ω at a pressure of 1.1 MPa. A circuit breaker with the fabricated piezoresistive composites acted as a switch with a response time of around 2 ms.  相似文献   

4.
This paper presents a vibration amplitude measurement method that greatly reduces the effects of baseline resistance drift in an all-polymer piezoresistive flow sensor or microtuft. The sensor fabrication is based on flexible printed circuit board (flex-PCB) technology to enable the potential for low-cost and scalable manufacture. Drift reduction is accomplished by discriminating the flow-induced vibration (‘flutter’) amplitude of the microtuft-based sensor as a function of flow velocity. Flutter peak-to-peak amplitude is measured using a microcontroller-based custom readout circuit. The fabricated sensor with the readout circuitry demonstrated a drift error of 2.8 mV/h, which corresponds to a flow-referenced drift error of 0.2 m/s of wind velocity per hour. The sensor has a sensitivity of 14.5 mV/(m/s) with less than 1% non-linearity over the velocity range of 5–16 m/s. The proposed vibration amplitude measurement method is also applied to a sensor array with a modified structure and a reduced dimension, which demonstrated a sensitivity of 13.2 mV/(m/s) with a flow-referenced drift error of 0.03 m/s of wind velocity per hour.  相似文献   

5.
This paper presents the characterization of a novel tactile sensor designed to measure shear forces. The sensor design is targeted for use in robotic and prosthetic hands, where haptic feedback or ability to detect shear forces associated with slip are critical. The presented sensor utilizes the principle of differential capacitance to measure the mechanical deflection of the sensor element. The dynamic range of the sensor can be varied by encapsulating the sensor terminal within silicone of varying hardness. The design features ease of mass production, low per-unit-cost, novel overload protection and low wire count, while still preserving the ability to achieve reasonable spatial resolutions and array densities. Mathematical and COMSOL multiphysics models of the sensor are presented, in addition to results from practical experiments. Sensors with a full scale displacement range of ±0.525 mm were produced and the differential capacitance was measured. Shear force transduction was characterized over the range of 0 N–4 N with the sense terminal encapsulated by silicone with a shore A hardness of 20. The effect of elastomer hardness on the sensor's dynamic range was analyzed. The differential capacitance, when measured at each fixed interval, was found experimentally to have a maximum standard deviation of 4.28e?16 F over a ±2 N range. A maximum standard deviation of 1.35e?15 F was measured across characterized full scale sensor range of ±4 N. The sensor design has a sensitivity of 1.967 fF/N of applied force and the sensor output was found to be approximately linear. The coefficient of determination, r2, was found to be 0.941.  相似文献   

6.
A survey on wireless sensor network infrastructure for agriculture   总被引:1,自引:0,他引:1  
The hybrid wireless sensor network is a promising application of wireless sensor networking techniques. The main difference between a hybrid WSN and a terrestrial wireless sensor network is the wireless underground sensor network, which communicates in the soil. In this paper, a hybrid wireless sensor network architecture is introduced. The framework to deploy and operate a hybrid WSN is developed. Experiments were conducted using a soil that was 50% sand, 35% silt, and 15% clay; it had a bulk density of 1.5 g/cm3 and a specific density of 2.6 cm? 3. The experiment was conducted for several soil moistures (5, 10, 15, 20 and 25%) and three signal frequencies (433, 868 and 915 MHz). The results show that the radio signal path loss is smallest for low frequency signals and low moisture soils. Furthermore, the node deployment depth affected signal attenuation for the 433 MHz signal. The best node deployment depth for effective transmission in a wireless underground sensor network was determined.  相似文献   

7.
This study consists of two cases: (i) The experimental analysis: Shot peening is a method to improve the resistance of metal pieces to fatigue by creating regions of residual stress. In this study, the residual stresses induced in steel specimen type C-1020 by applying various strengths of shot peening, are investigated using the electrochemical layer removal method. The best result is obtained using 0.26 mm A peening strength and the stress encountered in the shot peened material is ?276 MPa, while the maximum residual stress obtained is ?363 MPa at a peening strength of 0.43 mm A. (ii) The mathematical modelling analysis: The use of ANN has been proposed to determine the residual stresses based on various strengths of shot peening using results of experimental analysis. The back-propagation learning algorithm with two different variants and logistic sigmoid transfer function were used in the network. In order to train the neural network, limited experimental measurements were used as training and test data. The best fitting training data set was obtained with four neurons in the hidden layer, which made it possible to predict residual stress with accuracy at least as good as that of the experimental error, over the whole experimental range. After training, it was found the R2 values are 0.996112 and 0.99896 for annealed before peening and shot peened only, respectively. Similarly, these values for testing data are 0.995858 and 0.999143, respectively. As seen from the results of mathematical modelling, the calculated residual stresses are obviously within acceptable uncertainties.  相似文献   

8.
Uneven energy consumption is an inherent problem in wireless sensor networks characterized by multi-hop routing and many-to-one traffic pattern. Such unbalanced energy dissipation can significantly reduce network lifetime. In this paper, we study the problem of prolonging network lifetime in large-scale wireless sensor networks where a mobile sink gathers data periodically along the predefined path and each sensor node uploads its data to the mobile sink over a multi-hop communication path. By using greedy policy and dynamic programming, we propose a heuristic topology control algorithm with time complexity O(n(m + n log n)), where n and m are the number of nodes and edges in the network, respectively, and further discuss how to refine our algorithm to satisfy practical requirements such as distributed computing and transmission timeliness. Theoretical analysis and experimental results show that our algorithm is superior to several earlier algorithms for extending network lifetime.  相似文献   

9.
Gas sensing characteristics of WO3 powder and its physical properties under different heat treatment conditions have been investigated. The WO3 powder was synthesized by wet process from ammonium tungstate parapentahydrate and nitric solution. The precipitated product was then calcined at 300–800 °C for 2–12 h. The physical properties of the products were characterized by using X-ray diffractometer (XRD), scanning electron microscope (SEM), and BET method. It was found that the crystallite size, particle size and surface area of the WO3 powders were in the range of 30–45 nm, 0.1–3.0 μm and 1.2–3.7 m2/g, respectively. Calcination at higher temperature and longer time led to the increase of particle size by more than 300%, and reduction in specific surface area by more than 60%. However, the crystallite size was found to increase only by ∼30% under identical heat treatment. These results inferred that such heat treatment had more profound effect on crystallite aggregation than on crystallite growth. Gas sensing measurement showed that the largest change of output voltage to both ethyl alcohol and ammonia was obtained from the sensor calcined at 600 °C for 2 h, which had the highest surface area. However, the highest sensitivity which is defined as the ratio of sensor's resistance in air to that in the sample gas, Rair/Rgas, was obtained from the sensor calcined at 600 °C for 6 h due to its highest background resistance in air. Moreover, it was also found that the sensors were less sensitive to the oxygen content in the carrier gas and did not sensitive at all to water vapor.  相似文献   

10.
This paper reports the development of a micro thermal shear stress sensor that utilizes multiwalled carbon nanotubes as the sensing element. The sensor was fabricated by laterally aligning randomly distributed nanotubes into a 360 μm long and 90 μm wide conductive trace between two triangular shaped micro electrodes through the use of a high frequency AC electric field. During operation, the aligned nanotubes are electrically heated to an elevated temperature and surface shear stress is measured indirectly by the amount of convective heat transfer from the heated nanotubes to the surrounding fluid flow.The nanotube alignment process was primarily controlled by three different phenomena: dielectrophoresis, joule heating, and Brownian motion. Numerical simulations, together with experimental verifications, indicated that a successful alignment could only be realized if: (1) the dielectrophoretic force was positive, (2) the electro-thermal force was also positive, and (3) the dielectrophoretic force was high enough to overcome Brownian motion. The aligned nanotube trace has a room-temperature resistance of 580 Ω, which corresponds to a conductivity of 2.7 × 104 S/m. The absolute temperature coefficient of resistivity ranges from 0.01 to 0.04% °C−1. This is about one order of magnitude smaller than the highly doped polysilicon sensing material used in the MEMS micro shear stress sensor. The shear stress sensitivity of the nanotube trace operated at a 3% overheat ratio is found to follow the theoretical sensor power  (shear stress)1/3 relationship, provided the shear stress level is higher than 0.34 mPa. This result confirms the feasibility of using aligned multi-walled carbon nanotubes as a thermal shear stress sensing material.  相似文献   

11.
The planar Hall effect (PHE) sensor with a junction size of 3 μm × 3 μm for a single micro-bead detection has been fabricated successfully using a typical spin-valve thin film Ta(5)/NiFe(16)/Cu(1.2)/NiFe(2)/IrMn(15)/Ta(5) nm. The PHE sensor exhibits a sensitivity of about 7.2 μV Oe?1 in the magnetic field range of ±7 Oe approximately. We have performed an experiment to illustrated the possibility of single micro-bead detection by using a PHE sensor. A single micro-bead of 2.8 μm diameter size is secluded from 0.1% dilute solution of the Dynabeads® M-280 dropped on the sensor surface and is located on the sensor junction by using a micro magnetic needle. The comparison of the PHE voltage profiles in the field range from 0 to 20 Oe in the absence and presence of a single micro-bead identifies a single Dynabeads® M-280, the maximal signal change as large as ΔV  1.1 μV can be obtained at the field ~6.6 Oe. The results are well described in terms of the reversal of a basic single domain structure.  相似文献   

12.
This study reports the packaging effects of wafer-level chip scale packaging (WL-CSP) with a central opening on piezoresistive pressure sensors. A regular pressure sensor with calculated sensitivity of 3.1 × 10?2 mVV?1 kPa?1 and a sensitive pressure sensor with calculated sensitivity of 32.0 × 10?2 mVV?1 kPa?1 are investigated. A finite element (FE) model validated by experimental measurements is used to explore the sensing characteristics of the pressure sensors. The results show that the output variation of the packaged pressure sensor is dominated by the CTE mismatch not the piezoresistive coefficient change as temperature varies. WL-CSP with small polyimide (PI) thickness and large PI opening produces small packaging induced stress, making it ideal for precision sensing for both regular and sensitive pressure sensors.  相似文献   

13.
In order to reduce the response time of resistive oxygen sensors using porous cerium oxide thick film, it is important to ascertain the factors controlling response. Pressure modulation method (PMM) was used to find the rate-limiting step of sensor response. This useful method measures the amplitude of sensor output (H(f)) for the sine wave modulation of oxygen partial pressure at constant frequency (f). In PMM, “break” response time, which is minimum period in which the sensor responds precisely, can be measured. Three points were examined: (1) simulated calculations of PMM were carried out using a model of porous thick film in which spherical particles are connected in a three-dimensional network; (2) sensor response speed was experimentally measured using PMM; and (3) the diffusion coefficient and surface reaction coefficient were estimated by comparison between experiment and calculation. The plot of log f versus log H(f) in the high f region was found to have a slope of approximately −0.5 for both porous thick film and non-porous thin film, when the rate-limiting step was diffusion. Calculations showed the response time of porous thick film was 1/20 that of non-porous thin film when the grain diameter of the porous thick film was the same as the thickness of non-porous thin film. At 973 K, “break” response time (tb) of the resistive oxygen sensor was found by experiment to be 109 ms. It was concluded that the response of the resistive oxygen sensor prepared in this study was strongly controlled by diffusion at 923–1023 K, since the experiment revealed that the slope of plot of log f versus log H(f) in the high f region was approximately −0.5. At 923–1023 K, the diffusion coefficient of oxygen vacancy in porous ceria (DV) was expressed as follows: DV (m2s−1) = 5.78 × 10−4 exp(−1.94 eV/kT). At 1023 K, the surface reaction coefficient (K) was found to exceed 10−4 m/s.  相似文献   

14.
A sensor developed for measurement of water concentration inside glass/polymer encapsulation structures with a particular application area in accelerated aging of photovoltaic module encapsulants is described. An approximately 5 μm thick porous TiO2 film applied to a glass substrate with a conductive coating acts as the moisture-sensitive component. The response is calibrated with weather chamber experiments for sensors open to the environment and with diffusion experiments for sensors laminated under an encapsulant. For the interpretation of diffusion experiment results, a transport model describing the diffusion of water across the polymer/TiO2 interface is developed. The logarithm of AC resistance shows a linear dependence on water concentration in both open and encapsulated calibration. The first measurable response from an encapsulated 3.5 mm × 8 mm size sensor is obtained when approximately 10 μg of water has entered the film. Implications of the calibration results for sensor usage in accelerated aging tests are discussed.  相似文献   

15.
In this paper, we present a method that simplifies the interconnect complexity of N × M resistive sensor arrays from N × M to N + M. In this method, we propose to use two sets of interconnection lines in row–column fashion with all the sensor elements having one of their ends connected to a row line and other end to a column line. This interconnection overloading results in crosstalk among all the elements. This crosstalk causes the spreading of information over the whole array. The proposed circuit in this method takes care of this effect by minimizing the crosstalk. The circuit makes use of the concept of virtual same potential at the inputs of an operational amplifier in negative feedback to obtain a sufficient isolation among various elements. We theoretically present the suitability of the method for small/moderate sized sensor arrays and experimentally verify the predicted behavior by lock-in-amplifier based measurements on a light dependent resistor (LDR) in a 4 × 4 resistor array. Finally, we present a successful implementation of this method on a 16 × 16 imaging array of LDR.  相似文献   

16.
This paper reports on the measurements of displacement and blocking force of piezoelectric micro-cantilevers. The free displacement was studied using a surface profiler and a laser vibrometer. The experimental data were compared with an analytical model which showed that the PZT thin film has a Young's modulus of 110 GPa and a piezoelectric coefficient d31,f of 30 pC/N. The blocking force was investigated by means of a micro-machined silicon force sensor based on the silicon piezoresistive effect. The generated force was detected by measuring a change in voltage within a piezoresistors bridge. The sensor was calibrated using a commercial nano-indenter as a force and displacement standard. Application of the method showed that a 700 μm long micro-cantilever showed a maximum displacement of 800 nm and a blocking force of 0.1 mN at an actuation voltage of 5 V, within experimental error of the theoretical predictions based on the known piezoelectric and elastic properties of the PZT film.  相似文献   

17.
A novel micromachined passive wireless pressure sensor is presented. The device consists of a tuned circuit operating at 10 GHz fabricated on to a SiO2 membrane, supported on a silicon wafer. A pressure difference across the membrane causes it to deflect so that an antenna circuit detunes. The circuit is remotely interrogated to read off the sensor data wirelessly. The chip area is 5 mm × 4 mm and the membrane area is 2 mm2 with a thickness of 4 μm. Two on-chip passive resonant circuits were investigated: a meandered dipole and a zigzag antenna. Both have a physical length of 4.25 mm. The sensors show a shift in their resonant frequency in response to changing pressure of 10.28–10.27 GHz for the meandered dipole, and 9.61–9.58 GHz for the zigzag antenna. The sensitivities of the meandered dipole and zigzag sensors are 12.5 kHz/mbar and 16 kHz/mbar respectively.  相似文献   

18.
The development of a thermal switch based on arrays of liquid–metal micro-droplets is presented. Prototype thermal switches are assembled from a silicon substrate on which is deposited an array of 1600 30-μm liquid–metal micro-droplets. The liquid–metal micro-droplet array makes and breaks contact with a second bare silicon substrate. A gap between the two silicon substrates is filled with either air at 760 Torr, air at of 0.5 Torr or xenon at 760 Torr. Heat transfer and thermal resistance across the thermal switches are measured for “on” (make contact) and “off” (break contact) conditions using guard-heated calorimetry. The figure of merit for a thermal switch, the ratio of “off” state thermal resistance over “on” state thermal resistance, Roff/Ron, is 129 ± 43 for a xenon-filled thermal switch that opens 100 μm and 60 ± 17 for an 0.5 Torr air-filled thermal switch that opens 25 μm. These thermal resistance ratios are shown to be markedly higher than values of Roff/Ron for a thermal switch based on contact between polished silicon surfaces. Transient temperature measurements for the liquid–metal micro-droplet switches indicate thermal switching times of less than 100 ms. Switch lifetimes are found to exceed one-million cycles.  相似文献   

19.
This paper describes a technique for the measurement of the electrolyte temperature in an operating polymer electrolyte fuel cell (PEFC). A patterned thin film gold thermistor embedded in a 16 μm thick parylene film was laminated in the Nafion® electrolyte layer for in situ temperature measurements. Experimental results show that the sensor has a linear response of (3.03 ± 0.09) × 10−3 °C−1 in the 20–100 °C temperature range and is robust enough to withstand the electrolyte expansion forces that occur during water uptake. An electrolyte temperature increase of 1.5 °C was observed in real-time when operating the fuel cell at 0.2 V and a current density of 0.19 A/cm2. The temperature sensitivity of the present sensor is in an order of magnitude better than the conventional micro-thermocouples that have been reported. Additionally, use of micro-fabrication techniques allows for an accurate placement of the temperature sensor within the fuel cell. Simulation results show that the sensor has no significant effect on the local temperature distribution.  相似文献   

20.
Tri-o-thymotide (I) has been used as an electroactive material in PVC (poly(vinyl chloride)) matrix for fabrication of chromium(III)-selective sensor. The membrane containing tri-o-thymotide, sodium tetraphenyl borate (NaTPB), dibutyl phthalate (DBP) and PVC in the optimum ratio 5:1:75:100 (w/w) exhibits a working concentration range of 4.0 × 10−6 to 1.0 × 10−1 M with a Nernstian slope of 20.0 ± 0.1 mV/decade of activity in the pH range of 2.8–5.1. The detection limit of this sensor is 2.0 × 10−7 M. The electrode exhibits a fast response time of 15 s, shows good selectivity towards Cr3+ over a number of mono-, bi- and trivalent cations and can also be used in partially non-aqueous medium (up to 15%, v/v) also. The assembly has been successfully used as an indicator electrode in the potentiometric titration of chromium(III) against EDTA and also to determine Cr(III) quantitatively in electroplating industry waste samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号