首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kei Hasegawa  Suguru Noda 《Carbon》2011,49(13):4497-4504
Millimeter-tall single-walled carbon nanotube (SWCNT) forests were grown by chemical vapor deposition (CVD) from C2H2/H2O/Ar using Fe/Al–Si–O catalysts. Using combinatorial catalyst libraries coupled with real-time monitoring of SWCNT growth, the catalyst and CVD conditions were systematically studied. The keys for this growth are to maintain the C2H2 pressure below its upper limit to prevent the killing of the catalysts and to grow the SWCNTs before the catalyst particles lose their activity because of coarsening through Ostwald ripening. Lower temperatures lead to lower limits for the C2H2 pressure which result in lower growth rates but also lead to even lower coarsening rates which result in even longer growth lifetimes. Using these principles, we grew 4.5-mm-tall SWCNT forests in 2.5 h at 750 °C.  相似文献   

2.
Huaping Liu  Shohei Chiashi 《Carbon》2010,48(1):114-15680
Single-walled carbon nanotubes (SWCNTs) have been directly grown on a SiO2 substrate using the chemical vapor deposition (CVD) of ethanol without a catalyst. Care was taken to exclude the possibility that the SWCNT growth was induced by conventional metal catalysts such as Fe, Co and Ni resulting from the contamination. Pretreatment of the SiO2 at 950 °C or a higher temperature in H2 before CVD was critical for the synthesis of SWCNTs. After CVD process, nano-scale carbon particles were produced besides SWCNTs. Based on these results, we propose that the annealing of SiO2 substrates in H2 at high temperature generates defects on their surfaces, and these defects provide nucleation sites for the formation of carbon nanoparticles and assist the formation of carbon nanocaps, thus leading to the SWCNT growth.  相似文献   

3.
Shih-Hao Tseng 《Carbon》2010,48(8):2159-7011
A two-step method for the purification of single-walled carbon nanotube (SWCNT) rope containing substantial catalyst particles embedded in carbonaceous shells was developed. The first step was the triggering of rope ignition using a 9-V battery, which resulted in pre-oxidization of the carbon shells on the Fe3C catalyst and oxidation of the exposed Fe3C to form Fe2O3. In addition, SWCNTs with open-end structures due to ignition-induced cutting remained. In the second step, both oxalic acid (H2C2O4) and hydrochloric acid (HCl) were used as the reactants to remove the Fe2O3 particles. No damage on the SWCNT walls after H2C2O4 or HCl purification was found. In addition, adsorption of H2C2O4 was also found on the H2C2O4 purified SWCNT rope and it can be effectively removed by heating the rope at 200 °C in vacuum for 40 min. Samples were characterized by SEM, TEM, Raman spectroscopy, TGA, FTIR, XPS, and UV-Vis-NIR.  相似文献   

4.
The effect of reaction gas and catalyst on the growth of carbon nanotubes (CNTs) in the anodic aluminum oxide (AAO) nano-template was investigated. A mechanism of CNT growth was proposed, which involves the competitive catalytic carbon deposition between on the Co catalyst particles electrodeposited at the bottom of the pores and on the AAO template itself. Presence of H2 in the reacting gas mixture significantly affected the morphology and the wall structure of synthesized CNTs: CNTs of high crystallinity grew out of pores with H2 while no CNTs overgrew in the absence of H2. CNT synthesis by CO disproportionation showed a lower growth rate and a higher degree of ordering than those grown by C2H2 pyrolysis. The unified mechanism of CNT growth on AAO template is also proposed.  相似文献   

5.
The rapid growth method for vertically aligned, single walled carbon nanotube (SWCNT) arrays on flat substrates was applied to a fluidized-bed, using ceramic beads as catalyst supports as a means to mass produce sub-millimeter-long SWCNT arrays. Fe/Al2Ox catalysts were deposited on the surface of Al2O3 beads by sputtering and SWCNTs were grown on the beads by chemical vapor deposition (CVD) using C2H2 as a feedstock. Scanning electron microscopy and transmission electron microscopy showed that SWCNTs of 2–4 nm in diameter grew and formed vertically aligned arrays of 0.5 mm in height. Thermogravimetric analysis showed that the SWCNTs had a catalyst impurity level below 1 wt.%. Furthermore, they were synthesized at a carbon yield as high as 65 at.% with a gas residence time as short as <0.2 s. Our fluidized-bed CVD, which efficiently utilizes the three-dimensional space of the reactor volume while retaining the characteristics of SWCNTs on substrates, is a promising option for mass-production of high-purity, sub-millimeter-long SWCNT arrays.  相似文献   

6.
To improve the understanding on CNT growth modes, the various processes, including thermal CVD, MP-CVD and ECR-CVD, have been used to deposit CNTs on nanoporous SBA-15 and Si wafer substrates with C2H2 and H2 as reaction gases. The experiments to vary process parameter of ΔT, defined as the vector quantities of temperature at catalyst top minus it at catalyst bottom, were carried out to demonstrate its effect on the CNT growth mode. The TEM and TGA analyses were used to characterize their growth modes and carbon yields of the processes. The results show that ΔT can be used to monitor the temperature gradient direction across the catalyst nanoparticle during the growth stage of CNTs. The results also indicate that the tip-growth CNTs, base-growth CNTs and onion-like carbon are generally fabricated under conditions of ΔT > 0, <0 and ~0, respectively. Our proposed growth mechanisms can be successfully adopted to explain why the base- and tip-growth CNTs are common in thermal CVD and plasma-enhanced CVD processes, respectively. Furthermore, our experiments have also successfully demonstrated the possibility to vary ΔT to obtain the desired growth mode of CNTs by thermal or plasma-enhanced CVD systems for different applications.  相似文献   

7.
An improved model of C2H2 deposition for the growth of carbon nanotubes (CNT) in a horizontal tube reactor has been developed. This includes detailed gas-phase reactions of acetylene pyrolysis, and surface catalytic reactions for CNT growth. Based on this model, the mechanism of CNT growth has been studied by analyzing the change of the CNT growth rate for different growth conditions such as pressure, temperature, number of catalyst nanoparticles per unit area, and diameters of catalyst nanoparticles. The influence of gas-phase reactions and their products on CNT growth has also been evaluated. It is found that although C2H2 is the main contributor to the growth of CNTs, the contribution from the gas-phase products could not be ignored, especially at high temperature.  相似文献   

8.
The low temperature synthesis of single-walled carbon nanotubes (CNTs) on a Si substrate has been reported. Single-walled CNTs were grown from a C2H2 and H2 mixture by a hot-filament enhanced CVD method using a carbon filament. The catalyst was silica-supported iron–cobalt prepared by sol–gel method. We observed the influence of the catalyst material, C2H2 concentration, growth pressure and substrate temperature on the formation of the CNTs. By optimizing the catalyst, both single-walled CNTs and multiwalled CNTs could be synthesized, depending on the reaction conditions. The formation of single-walled CNTs occurred when the carbon supply was kept low, i.e. low C2H2 concentration and low reaction pressure. The diameter of tubes decreased with increasing the substrate temperature. By optimizing the growth conditions, a small diameter of 0.65 nm single-walled CNTs, estimated from Raman scattering spectrum, was achieved even the low substrate temperature as 660 °C.  相似文献   

9.
Co is used as a catalyst for chemical vapor deposition (CVD) of vertically aligned multi-walled carbon nanotubes (CNTs) in a tube furnace at atmospheric pressure. C2H2 and NH3 were used for the carbon feedstock and reaction control, respectively. The CVD process parameters determine the chemical properties of the Co particles and subsequently the morphologies and field emission behavior of CNTs as they strongly depend upon the catalyst condition. The flow rate ratio of NH3 to C2H2 is shown to be central to the synthesis of vertically aligned CNTs. Repeatable synthesis of vertically aligned CNTs at atmospheric pressure in a tube furnace is cost effective for large area deposition of such structures which may be used, for example, in vacuum field emission devices.  相似文献   

10.
We report a study of hydrogen storage and its mechanism in a novel material, representing single-walled carbon nanotubes (SWCNTs) encapsulated by thin Pd layers onto a Pd substrate. A synergetic effect resulting in combination of the Pd and the SWCNT properties with regard to hydrogen has been achieved. We showed that adding SWCNTs increases the H2-capacity of the Pd–SWCNT composite under electrochemical loading only by up to 25% relative to the Pd metal alone. At the same time, with regard to the added SWCNTs, such synergetic approach (providing high H2 pressure from highly H-loaded massive Pd substrate into a small fraction of deposited SWCNT) allowed us to achieve a net capacity of 8–12 wt.%. H2, thus, bringing a unique chance to study hydrogen storage mechanism in highly H-loaded SWCNT. Using ESR technique it was established that the Pd–Cx π-complexes forming at the openings of SWCNTs could be considered as hydrogen adsorption sites, providing both high gravimetric capacity (H/C > 1) and low hydrogen binding energy in the Pd encapsulated SWCNT.  相似文献   

11.
Metal-catalyzed SWCNT growth has been modeled using quantum chemical molecular dynamics (QM/MD) in conjunction with feeding of carbon atoms to C40-Fe55 and C40-Ni55 model complexes at 1500 K. The rate of Fe55-catalyzed SWCNT growth determined in this work was 19% slower than the Fe38-catalyzed growth rate. Conversely, Ni55-catalyzed SWCNT growth exhibited a growth rate 69% larger than of Fe55-catalyzed SWCNT growth, a fact consistent with excellent performance of Ni in laser evaporation and carbon-arc experiments. Ni55-catalyzed growth was preceded by the formation of extended polyyne chains at the base of the SWCNT, and so differed fundamentally from Fe55-catalyzed growth. These polyyne chains usually persisted for 10-30 ps. Subsequent polyyne ring condensation resulted in carbon polygon addition at the SWCNT base. The relative stabilities of the Cn carbon cluster moieties on the Fe55 and Ni55 surfaces were consistent with the relative strengths of the Fe-C, Ni-C and C-C interactions. The presence of smaller carbon moieties on the Fe55 surface led to the dissemination of surface iron atoms, and subsequent diffusion of short Cn units through the subsurface region of the catalyst particle. Conversely, the Ni55 catalyst particle was observed to be more stable, remaining intact to a greater extent.  相似文献   

12.
Carbon nanotubes (CNTs) were fabricated by Chemical Vapour Depositon using a C2H2/H2 mixture. They were grown on Si/SiO2 substrate with Fe film as catalyst, deposited using thermal evaporation technique. The aim of this work is to emphasize the role of the Fe catalyst thickness and the C2H2/H2 flow rate ratio to grow vertically aligned CNTs by thermal CVD. In order to investigate these aspects, four Fe metal films with thickness of 2.5, 3.5, 7.5 and 16 nm were deposited on Si/SiO2 substrate and CNTs were grown with different C2H2/H2 flow rate ratios, from 5/95 to 30/70 by thermal CVD at 750 °C. Results showed that CNTs were not vertically aligned with 16 nm catalyst thickness for all flow rate ratios, while CNTs were always vertically aligned for iron thickness less than 3.5 nm and vertically aligned only for a C2H2/H2 flow rate ratio greater than 20/70 for the 7.5 nm catalyst thickness. Morphology and structural information about CNTs and Fe metal clusters were provided by field emission gun-scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). Our results also indicate that for each flow rate ratio exists a critical thickness of iron catalyst under which vertically aligned CNTs are obtained.  相似文献   

13.
Molecular sieving carbons (MSCs) were prepared from carbonized phenol-formaldehyde resin wastes by the chemical vapor deposition (CVD) of the pyrolyzed carbon from hydrocarbon species. The pore size of the MSCs could be controlled in the range 0.37-0.42 nm by changing the hydrocarbon species pyrolyzed, the pyrolyzing temperature, and the processing time. It is shown that some of the MSCs have an excellent selectivity for separating CO2 and CH4, and others for separating C3H8 and C3H6. As the mechanism for controlling the pore size during CVD processing, we elucidated that the adsorption of hydrocarbon molecules first takes place on the pore surface and then the adsorbed hydrocarbons pyrolyze into carbon. Therefore, the pore size of the MSC can be adjusted by controlling the amount hydrocarbon adsorbed on the phenol-formaldehyde resin char.  相似文献   

14.
S. McCaldin 《Carbon》2006,44(11):2273-2280
The carbon nanostructures formed during chemical vapour deposition (CVD) of ethene and hydrogen over an iron(III) oxide catalyst precursor have been investigated. Graphitic nanofibres and carbon nanotubes were both observed during synthesis, with the structures observed depending on the temperature and gas mix (C2H4 and H2) used. Mixtures ranging from 100% to 5% ethene in hydrogen were investigated at different temperatures. During the synthesis, the iron(III) oxide was transformed into iron carbide (Fe3C). The samples were characterised using transmission electron microscopy and X-ray diffraction. Filamentous nanostructures were observed with high hydrogen content (?80%) in the gas stream, whereas no filamentous structures were observed with ?20% H2. The temperature of synthesis was varied between 500 and 800 °C, with higher temperatures giving higher carbon deposition rates, but also affected the nanostructures observed. However, it was found that increasing the temperature during CVD did not change the type of carbon deposited but did increase the deposition rate, providing a route to increase growth yields for a desired type of carbon nanostructure.  相似文献   

15.
The rate of evolution of CH4, CO, CO2, H2, C2 hydrocarbons, and C3 hydrocarbons during pyrolysis of Colorado oil shale between 25 and 900 °C is reported. All experiments were performed nonisothermally using linear heating rates varying from 0.5 to 4.0 °C min?1. Hydrogen is the major noncondensable gas produced by kerogen pyrolysis. The amount of H2 released is influenced, via the shift and Boudouard reactions, by the CO2 evolved from mineral carbonates. Lesser amounts of C1, C2, and C3 hydrocarbons are produced. On the basis of heat content, however, the combined C1 to C3 hydrocarbons contribute twice as much as H2 to the heating value of the pyrolysis gas. The evolution of H2 and CH4 involves processes that are interpreted as a ‘primary’ pyrolysis of the kerogen to generate oil, and a higher temperature ‘secondary’ pyrolysis of the carbonaceous residue. The CO formed is a product of the Boudouard reaction; nearly complete conversion of the carbon residue to CO via this reaction is observed.  相似文献   

16.
Carbon nanotubes (CNTs) were fabricated by Chemical Vapour Depositon using a C2H2/H2 mixture. They were grown on Si/SiO2 substrate with Fe film as catalyst, deposited using thermal evaporation technique. The aim of this work is to emphasize the role of the Fe catalyst and the C2H2/H2 flow rate ratio to grow vertically aligned CNTs. Fe metal samples with the deposition times ranging from 1 min to 16 min were deposited and CNTs were grown with different C2H2/H2 flow rate ratio, from 5/95 to 30/70 by thermal CVD at 750 oC. Results show that CNTs were not vertically aligned with the longest catalyst deposition time for all flow rate ratios, while CNTs were always vertically aligned for deposition time less than 4 min and vertically aligned only for a C2H2 flow rate greater than 20% for the 7 min catalyst deposition time. Morphological and structural information about CNTs and Fe metal clusters were provided by field emission gun-scanning electron microscopy (FEG-SEM), atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). An accurate balance between the Fe metal clusters density and the C2H2/H2 flow rate ratio favours to achieve of a good vertical alignment  相似文献   

17.
Despite significant progress in carbon nanotube (CNT) synthesis by thermal chemical vapor deposition (CVD), the factors determining the structure of the resulting carbon filaments and other graphitic nanocarbons are not well understood. Here, we demonstrate that gas chemistry influences the crystal structure of carbon filaments grown at low temperatures (500 °C). Using thermal CVD, we decoupled the thermal treatment of the gaseous precursors (C2H4/H2/Ar) and the substrate-supported catalyst. Varying the preheating temperature of the feedstock gas, we observed a striking transition between amorphous carbon nanofibers (CNFs) and crystalline CNTs. These results were confirmed using both a hot-wall CVD system and a cold-wall CVD reactor. Analysis of the exhaust gases (by ex situ gas chromatography) showed increasing concentrations of specific volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) that correlated with the structural transition observed (characterized using high-resolution transmission electron microscopy). This suggests that the crystallinity of carbon filaments may be controlled by the presence of specific gas phase precursor molecules (e.g., VOCs and PAHs). Thus, direct delivery of these molecules in the CVD process may enable selective CNF or CNT formation at low substrate temperatures. The inherent scalability of this approach could impact many promising applications, especially in the electronics industry.  相似文献   

18.
Self-organization of nitrogen-doped carbon nanotube (N-CNT) double helices was achieved by chemical vapor deposition (CVD) with Fe–Mg–Al layered double hydroxides (LDHs) as the catalyst precursor. The as-obtained N-CNT double helix exhibited a closely packed nanostructure with a catalyst flake on the tip, which connected the two CNT strands on both sides of the flake. A mechanism for the self-organization of N-CNTs into double-helix structures with a moving catalyst head is proposed. Effective carbon/nitrogen sources, high-density active catalyst nanoparticles, space confinement, and the precise chiral match between the two CNT strands are found to be crucial for the N-CNT double helix formation. The morphologies of N-CNTs can be well tuned between bamboo-like and cup-stacked structures, and a CNT/N-CNT heterojunction can be constructed by changing the carbon feedstock from C2H4 to CH3CN during CVD growth. N-CNT double helices with a length of 10–36 μm, a screw pitch of 1–2 μm, a CNT diameter of 6–10 nm, and a N-content of 2.59 at.% can be synthesized on the LDH catalysts by the efficient CVD growth.  相似文献   

19.
20.
In previously reported experimental studies, a yield of double-walled carbon nanotubes (DWCNTs) at C70@Single-walled carbon nanotubes (SWCNTs) is higher than C60@SWCNTs due to the higher sensitivity to photolysis of the former. From the perspective of pyrolysis dynamics, we would like to understand whether C70@SWCNT is more sensitive to thermal decomposition than C60@SWCNT, and the starting point of DWCNT formation, which can be obtained through the decomposition fragmentation of the nanopeapods, which appears in the early stages. We have studied the fragmentation of C70@SWCNT nanopeapods, using molecular dynamics simulations together with the empirical tight-binding total energy calculation method. We got the snapshots of the fragmentation structure of carbon nano-peapods (CNPs) composed of SWCNT and C70 fullerene molecules and the geometric spatial positioning structure of C70 within the SWCNT as a function of dynamics time (for 2 picoseconds) at the temperatures of 4000 K, 5000 K, and 6000 K. In conclusion, the scenario in which C70@SWCNT transforms to a DWCNT would be followed by the fragmentation of C70, after C70, and the SWCNT have been chemically bonding in the early stages. The relative stability of fullerenes in CNPs could be reversed, compared to the ranking of the relative stability of the encapsulated molecules themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号