共查询到20条相似文献,搜索用时 15 毫秒
1.
鲁棒的机器人蒙特卡洛定位算法 总被引:2,自引:0,他引:2
提出一种基于粒子滤波器的机器人定位算法. 首先利用一并行扩展卡尔曼滤波器作为粒子预测分布, 将当前观测的部分信息融入, 以改善滤波效果, 减小所需粒子数; 然后提出变密度函数边界的马尔可夫链蒙特卡洛(Markov chain Monte Carlo, MCMC)重采样方法, 以提高粒子的细化能力; 最后结合普通重采样方法, 提出一种改进的MCMC重采样的机器人定位算法, 减少粒子匮乏效应的同时, 提高了定位精度. 实验结果表明, 该算法较传统方法在计算复杂度、定位精度和鲁棒性方面都有显著提高. 相似文献
2.
针对以蒙特卡罗为基础的几种无线传感器网络定位算法普遍存在定位精度和采样效率低的问题,文中提出了一种RSSI辅助的蒙特卡罗盒定位算法(RAMCB)。通过实验构造出符合实际环境的RSSI和距离区间的映射关系数据库;在定位阶段,未知节点利用来自一跳和两跳锚节点的RSSI值查询数据库,得到与一跳和两跳锚节点的距离区间,利用距离区间建立更为精确的采样箱,以提高采样效率;未知节点根据样本到一跳、两跳锚节点的估计距离和实际距离的差值来动态赋予样本的权值。仿真结果表明:RAMCB算法能有效提高定位精度和采样效率。 相似文献
3.
4.
研究移动无线传感网中的节点定位问题,分析影响蒙特卡罗定位精度的两个因素:观测值和前一时刻的位置样本集,提出一种迭代蒙特卡罗定位算法。该算法中,信标节点的位置信息在每个时间段只被它的邻居节点转发一次,但是接收到该信息的其他节点会保存它们,并在下一时间段将它们与待发送/转发的信息融合成一个数据包进一步转发,增加待定位节点用于估算前几个时间段位置样本集的观测值。待定位节点再利用蒙特卡罗算法迭代计算前面时间段的位置样本集,并充分利用观测值滤除较差样本,从而提高当前时刻的定位精度。仿真实验表明改进算法提高了定位准确度。当信标节点密度较低时,更能体现改进算法的优越性。 相似文献
5.
提出了一种基于粒子聚合重采样的移动机器人聚合蒙特卡洛定位(Merge
Monte Carlo
localization,Merge-MCL)方法.首先将移动机器人作业空间划分为离散栅格,建立栅格集,然后提出一种基于粒子空间相近性的粒子聚合技术,
在保证粒子空间分布合理性的同时自适应调整粒子集规模.提出的粒子聚合重采样方法能够缓解粒子权值退化问题,
并避免了传统重采样方法导致的多样性匮乏问题.仿真结果表明,粒子聚合重采样方法能够有效控制粒子集规模,
聚合蒙特卡洛定位方法是鲁棒、有效的. 相似文献
6.
7.
无线传感器网络节点自身定位技术是无线传感器网络关键技术之一。针对目前各种定位算法存在定位精度较低的问题,提出了一种基于Monte Carlo方法的定位算法,该算法利用粒子到锚节点的距离计算各粒子的权值,通过滤波不断更新粒子的集合,使粒子收敛到未知节点的位置。对非视线情况、不同锚节点个数、迭代次数及粒子数进行了定位过程仿真,并和极大似然估计定位算法进行了定位结果比较。结果表明:该算法充分利用了对节点位置估计的有效信息,一定程度上抑制了非视线误差的影响,定位精度高,稳定性好。 相似文献
8.
9.
针对无线传感器网络(WSN)中的移动节点定位问题,提出了一种将反馈时间序列与蒙特卡洛相结合的定位算法TSMCL(Feedback Time Series-Based Monte Carlo)。该算法基于目标节点1跳范围内的邻居锚节点(至少3个)反馈信号的先后顺序,构建了节点可能的初始采样区域R1,并以区域R1与蒙特卡洛采样区域R2的重叠区作为新的采样区域R,以进一步缩小采样范围、提高采样效率。仿真结果表明:与蒙特卡洛定位算法相比,提出的TSMCL算法能够减少约38%的定位误差,尤其当节点移动速度较高时,算法的收敛速度也得到了显著提升。 相似文献
10.
11.
基于蒙特卡洛方法的移动传感网节点定位优化算法 总被引:1,自引:0,他引:1
无线传感器网络正在被应用到各种各样的监测环境中,在这些应用场景中,传感器节点的位置信息大都是至关重要的.目前对传感器节点定位方面的研究大都只针对静态WSN的情况,对于移动WSN节点定位的研究仍然十分有限.该文提出了移动WSN中节点间互相优化定位的新思路,通过判断式筛选出定位精度高的节点,并协助其他节点进行定位条件的优化.所提出的算法TSBMCL通过更精确的裁剪待定位节点的蒙特卡洛盒,并增加节点的粒子滤波条件来实现节点的精确定位.大规模的仿真结果表明,该算法可精确的锁定节点位置区域,高效的采样得到节点的位置样本,相比于传统的移动WSN蒙特卡洛定位方法,大大提高了节点的定位精度. 相似文献
12.
Andrea Gasparri Stefano Panzieri Federica Pascucci Giovanni Ulivi 《Journal of Intelligent and Robotic Systems》2006,47(2):155-174
Localization, i.e., estimating a robot pose relative to a map of an environment, is one of the most relevant problems in mobile robotics. The research community has devoted a big effort to provide solutions for the localization problem. Several methodologies have been proposed, among them the Kalman filter and Monte Carlo Localization filters. In this paper, the Clustered Evolutionary Monte Carlo filter (CE-MCL) is presented. This algorithm, taking advantage of an evolutionary approach along with a clusterization method, is able to overcome classical MCL filter drawbacks. Exhaustive experiments, carried on the robot ATRV-Jr manufactured by iRobot, are shown to prove the effectiveness of the proposed CE-MCL filter. 相似文献
13.
We consider the Sequential Monte Carlo (SMC) method for Bayesian inference applied to the problem of information-theoretic
distributed sensor collaboration in complex environments. The robot kinematics and sensor observation under consideration
are described by nonlinear models. The exact solution to this problem is prohibitively complex due to the nonlinear nature
of the system. The SMC method is, therefore, employed to track the probabilistic kinematics of the robot and to make the corresponding
Bayesian estimates and predictions. To meet the specific requirements inherent in distributed sensors, such as low-communication
consumption and collaborative information processing, we propose a novel SMC solution that makes use of the particle filter
technique for data fusion, and the density tree representation of the a posterior distribution for information exchange between
sensor nodes. Meanwhile, an efficient numerical method is proposed for approximating the information utility in sensor selection.
A further experiment, obtained with a real robot in an indoor environment, illustrates that under the SMC framework, the optimal
sensor selection and collaboration can be implemented naturally, and significant improvement in localization accuracy is achieved
when compared to conventional methods using all sensors. 相似文献
14.
Ronald Kleiss 《Computer Physics Communications》2006,175(2):93-115
While the Quasi-Monte Carlo method of numerical integration achieves smaller integration error than standard Monte Carlo, its use in particle physics phenomenology has been hindered by the absence of a reliable way to estimate that error. The standard Monte Carlo error estimator relies on the assumption that the points are generated independently of each other and, therefore, fails to account for the error improvement advertised by the Quasi-Monte Carlo method. We advocate the construction of an estimator of stochastic nature, based on the ensemble of pointsets with a particular discrepancy value. We investigate the consequences of this choice and give some first empirical results on the suggested estimators. 相似文献
15.
蒙特卡罗与准蒙特卡罗相互融合的整体光照计算 总被引:1,自引:0,他引:1
蒙特卡罗方法具备普适性、鲁棒性以及与问题复杂度无关性等优点,非常适于十分难解的整体光照计算问题,但缺点是生成图像随机噪声大.准蒙特卡罗方法计算连续被积函数低维积分的收敛速度快于蒙特卡罗方法,但不适于直接求解复杂的整体光照计算问题.文中研究蒙特卡罗整体光照计算最根本环节,即随机游动的抽样模式,提出融合蒙特卡罗与准蒙特卡罗的两种通用的新型整体光照计算策略.两种新型策略可以应用于所有基于蒙特卡罗的整体光照算法,不仅能够降低生成图像的随机噪声,而且实现简单、不增加计算和存储开销. 相似文献
16.
Dr. L. Neumann 《Computing》1995,55(1):23-42
The fast radiosity-type methods for very complex diffuse environments, introduced herein, present a nearly linear-time solution. The outlined procedures rely on recursive algorithms with stochastic convergence for solving the radiosity equation system. Approximations of gathering and shooting at very low computational cost—rather than the exact matrix of a single reflection—are used. The efficiency of the methods will be increased by applying variance reduction techniques. 相似文献
17.
18.
One of the main shortcomings of Markov chain Monte Carlo samplers is their inability to mix between modes of the target distribution. In this paper we show that advance knowledge of the location of these modes can be incorporated into the MCMC sampler by introducing mode-hopping moves that satisfy detailed balance. The proposed sampling algorithm explores local mode structure through local MCMC moves (e.g. diffusion or Hybrid Monte Carlo) but in addition also represents the relative strengths of the different modes correctly using a set of global moves. This ‘mode-hopping’ MCMC sampler can be viewed as a generalization of the darting method [1]. We illustrate the method on learning Markov random fields and evaluate it against the spherical darting algorithm on a ‘real world’ vision application of inferring 3D human body pose distributions from 2D image information. 相似文献
19.
International Journal of Computer Vision - This paper strives for spatio-temporal localization of human actions in videos. In the literature, the consensus is to achieve localization by training on... 相似文献
20.
Rajnikant Sharma Stephen Quebe Randal W. Beard Clark N. Taylor 《Journal of Intelligent and Robotic Systems》2013,72(3-4):429-440
In cooperative localization a group of robots exchange relative position measurements from their exteroceptive sensors and their motion information from interoceptive sensors to collectively estimate their position and heading. For the localization errors to be bounded, it is required that the system be observable, independent of the estimation technique being used. In this paper, we develop a test-bed of three ground robots, which are equipped with wheel encoders and omnidirectional cameras, to implement the bearing-only cooperative localization. The simulation and experimental results validate the observability conditions, derived in Sharma et al. (IEEE Trans Robot 28:2, 2011), for the complete observability of the bearing-only cooperative localization problem. 相似文献